Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pikachu đơn giản thì làm thử đừng nói mà ko làm nha ^_^
duyệt đi
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+1\right)}\right)=\frac{101}{1540}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{101}{1540}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+1}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{303}{1540}\Rightarrow\frac{1}{x+1}=\frac{1}{308}\)
=> x + 1 = 380 => x = 308 - 1 => x = 307
Vậy x = 307
=1/3(3/5.8+3/8.11+............+1/x(x+3)=101/1540
=.1/3(1/5.8+1/8.11+......1/x(x+3)=101/1540
=1/3(1/5-1/8+1/8-1/11+...........1/x-1/x+3=101/1540
=>1/3(1/5-1/x+3)=101/1540
=>1/5-1/x+3=101/1540 chia 1/3 =303/1540
=>1/x+3= 1/308
...........
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}\right)=3.\frac{101}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{308}{1540}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{5}{1540}=\frac{1}{308}\)
=> x + 3 = 308
=> x = 308 - 3
=> x = 305
Vậy x = 305
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}\right)=3.\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{5}{1540}=\frac{1}{308}\)
=> x + 3 = 308
=> x = 308 - 3
=> x = 305
Vậy x = 305
\(3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(3.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{4620}\)
\(\frac{1}{x+3}=...\) (tự làm tiếp)
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+1\right)}=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+1}=\frac{101}{1540}:\frac{1}{3}=\frac{303}{1540}\)
\(\frac{1}{x+1}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
=> x + 1 = 308
=> x = 308 - 1
=> x = 307
Mình không viết lại đề bài nha
a) \(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\Rightarrow x=305\)