Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{1235\left(1235\cdot2-1\right)-1235-89}{\left(1235\cdot2-1\right)\left(1235+89\right)+1235}\)
\(=\dfrac{1235\left(1235\cdot2-2\right)-89}{1235\cdot\left(1235\cdot2-1\right)+1235+89\cdot\left(1235\cdot2-1\right)}\)
\(=\dfrac{1235\cdot1234-89}{1235\cdot2470+89\cdot2469}\)
=0,93
b: \(=\dfrac{4002}{1001^2-1-999\cdot1001}=\dfrac{4002}{1001\left(1001-999\right)-1}\)
\(=\dfrac{4002}{1001\cdot2-1}=\dfrac{4002}{2001}=2\)
Bài 3:
\(\frac{3n+1}{5n+2}\)
Ta có : (3n +1) * 5 =15n + 5
(5n+2) *3 = 15n + 6
Mà : 15n + 6 - (15n + 5 ) =1
=>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)
Ta có \(A=\frac{1235.2469-1234}{1234.2469+1235}=\frac{\left(1234+1\right).2469-1234}{1234.2469+1235}=\frac{1234.2469+2469-1234}{1234.2469+1235}=\frac{1234.2469+1235}{1234.2469+1235}=1\)
\(B=\frac{4002}{1000.1002-999.1001}=\frac{4002}{\left(1001-1\right)\left(1001+1\right)-\left(1000-1\right)\left(1000+1\right)}=\frac{4002}{\left(1001^2-1\right)-\left(1000^2-1\right)}=\frac{4002}{1001^2-1-1000^2+1}\)
\(B=\frac{4002}{1001^2-1000^2}=\frac{4002}{\left(1001-1000\right)\left(1001+1000\right)}=\frac{4002}{2001}=2\)
Do đó: \(B>A\) ( vì \(2>1\) )
=> x2 - 122 = 1234
=> x2 = 1378
=> x = \(\sqrt{1378}\) hoặc x = \(-\sqrt{1378}\)