Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^3+4^3+6^3+...+100^3\)
\(2^3A=2^3\left(2^3+4^3+6^3+...+100^3\right)\)
\(8A=4^3+6^3+8^3+...+102^3\)
\(8A-A=7A=102^3-2^3\)
\(A=\frac{102^3-2^3}{7}\)
Xét : \(\frac{\left(2n+1\right)^3+n^3}{\left(n+1\right)^3-n^3}=\frac{\left(3n+1\right)\left(4n^2+4n+1+n^2-2n^2-n\right)}{\left(n+1-n\right)\left(n^2+2n+1+n^2-n^2-n\right)}\)
\(=\frac{\left(3n+1\right)\left(3n^2+3n+1\right)}{3n^2+3n+1}=3n+1\)với \(n\in N,n\ge1\)
Áp dụng : \(A=\frac{\left(2.1+1\right)^3+1^3}{\left(1+1\right)^3-1^3}+\frac{\left(2.2+1\right)^3+2^3}{\left(2+1\right)^3-2^3}+...+\frac{\left(2.2006+1\right)^3+2006^3}{\left(2006+1\right)^3-2006^3}\)
\(=\left(3.1+1\right)+\left(3.2+1\right)+...+\left(3.2006+1\right)\)
\(=3\left(1+2+...+2006\right)+2006\)
\(=3.\frac{2006.2007}{2}+2006\)
Tới đây bạn tự tính nhé :)
A= 3+3^2+3^3+.....+3^2015+3^2016
2A=3^2+3^4+........+3^2016 +2^2017
2A-A= (3^2-3^2) + ( 3^3-3^3)+..........+(3^2015-3^2015)+(3^2016-3^2016)+(3^2017 -3)
A= 3 ^2017 - 3
Hết