Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1x2x3x...2018x2019 - 1x2x3x..2018 - 1x2x3x4x...x2017x20182
= 1x2x3x...x2018x(2019 - 1 - 2018)
= 1x2x3x...x2018x0
= 0
Giải:
Ta có:A=1.2+2.3+3.4+...+2017.2018
3A=1.2.3 2.3.3+...+2017.2018.3
=1.2.(3-0)+2.3.(4-1)+...+2017.2018.(2019-2016)
=1.2.3+2.3.4+...+2017.2018.2019-1.2.0-2.3.1-...-2017.2018.1016
=2017.2018.2019-1.2.0
=2017.2018.2019
=>A=2017.2018.2019/3=2018.(2017.2019)/3
Và B=20183
/3=2018.2018.2018/3=2018.(2018.2018)/3
Lại có: 2017.2019=2017.(2018+1)=2017.2018+2017
2018.2018=(2017+1).2018=2017.2018+2018
Mà 2017.2018+2017<2017.2018+2018 =>2017.2019<2018.2018
=>2018.(2017.2019)<2018.(2018.2018)
=>A=2018.(2017.2019)/3<2018.(2018.2018)/3=B
=>A<B
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=\left[2+2^2+...+2^{2019}\right]-\left[1+2+2^2+...+2^{2018}\right]\)
\(A=2^{2019}-1\)
#)Giải :
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+2^4+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
\(B=3+3^2+3^3+...+3^{2017}\)
\(3B=3^2+3^3+3^4+...+3^{2018}\)
\(3B-B=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2B=3^{2018}-3\)
\(B=\frac{3^{2018}-3}{2}\)
\(\frac{2}{3}\times\frac{2018}{2017}-\frac{2}{3}\times\frac{1}{2017}+\frac{1}{3}\)
\(\frac{4036}{6051}-\frac{2}{6051}+\frac{1}{3}\)
\(=1\)
Code : Breacker