K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
10 tháng 11 2023

\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right).x=\dfrac{1}{5}\\ =>\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right).x=\dfrac{1}{5}\\ =>\left(\dfrac{1}{2}-\dfrac{1}{100}\right).x=\dfrac{1}{5}\\ =>\dfrac{49}{100}.x=\dfrac{1}{5}\\ =>x=\dfrac{1}{5}:\dfrac{49}{100}=\dfrac{1}{5}.\dfrac{100}{49}\\ =>x=\dfrac{20}{49}\)

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

$x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}+\frac{1}{100}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}+\frac{1}{100}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}$

$=1$

`# \text {DNamNgV}`

\(x-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}-...-\dfrac{1}{98\cdot99}=\dfrac{1}{100}+\dfrac{1}{99\cdot100}\)

\(\Rightarrow x-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}\right)=\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow x-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)=\dfrac{1}{99}\)

\(\Rightarrow x-\left(1-\dfrac{1}{99}\right)=\dfrac{1}{99}\)

\(\Rightarrow x-\dfrac{98}{99}=\dfrac{1}{99}\)

\(\Rightarrow x=\dfrac{1}{99}+\dfrac{98}{99}\)

\(\Rightarrow x=\dfrac{99}{99}\)

\(\Rightarrow x=1\)

Vậy, `x = 1.`

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Gọi tổng trên là A
A=1/1.2.3+1/2.3.4+1/3.4.5+...1/98.99.100
Ta xét :
1/1.2 ‐ 1/2.3 = 2/1.2.3; 1/2.3 ‐ 1/3.4 = 2/2.3.4;...; 1/98.99 ‐ 1/99.100 = 2/98.99.100
tổng quát: 1/n﴾n+1﴿ ‐ 1/﴾n+1﴿﴾n+2﴿ = 2/n﴾n+1﴿﴾n+2﴿.
Do đó: 2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= ﴾1/1.2 ‐ 1/2.3﴿ + ﴾1/2.3 ‐ 1/3.4﴿ +...+ ﴾1/98.99 ‐ 1/99.100﴿
= 1/1.2 ‐ 1/2.3 + 1/2.3 ‐ 1/3.4 + ... + 1/98.99 ‐ 1/99.100
= 1/1.2 ‐ 1/99.100
= 1/2 ‐ 1/9900
= 4950/9900 ‐ 1/9900
= 4949/9900.
Vậy A = 4949 / 9900

19 tháng 8 2017

Bn làm sai r . kết quả là \(\frac{101}{297}\) nhưng mik ko bt cách giải thôi

6 tháng 7 2016

Do mỗi số hạng ở vế trái nằm trong dấu giá trị tuyệt đối mà vế phải 100 là số dương nên x cũng phải dương.

Do x dương và trong mỗi dấu giá trị tuyệt đối đều dương nên ta lập được kết quả sau:

x+1/1.2+x+1/2.3+1/3.4+....+x+1/99.100=100x

Dãy trên có 99 số x nên:

99x+(1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100)=100x

1-1/100=x

x=99/100

Vậy x=99/100

Chúc em học tốt^^

6 tháng 4 2024

123

29 tháng 8 2015

A=1/1-1/2+1/2-1/3+1/3-1/4+...............+1/99-1/100

A=1/1-1/100

A=100/100-1/100

A=99/100

Mk ko chép đề bài

29 tháng 8 2015

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.+.....+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A==\frac{99}{100}\)