Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{2}{x}+\frac{1}{x}\right)\)
=> \(A=2-\frac{1}{x}\)
Giải phương trình:
\(2-\frac{1}{x}=\frac{4095}{2048}\)
\(\frac{1}{x}=2-\frac{4095}{2048}\)
\(\frac{1}{x}=\frac{1}{2048}\)
x=2048
ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{x}.\)
\(A=1+\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{x}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2.2}+...+\frac{1}{x:2}\)
\(\Rightarrow2A-A=2-\frac{1}{x}\)
\(A=2-\frac{1}{x}=\frac{4095}{2048}\)
=> 1/x = 1/2048
=> x = 2048 ( 2048 = 211 )
=17/6:(1-2/3)
=17/6:1/3
=17/2
=13/6×9/2-6/7
=39/4-6/7
=249/28
a) \(\left(\frac{5}{2}+\frac{1}{3}\right):\left(1-\frac{2}{3}\right)=\left(\frac{15}{6}+\frac{2}{6}\right):\frac{1}{3}\)
\(=\frac{17}{6}:\frac{1}{3}=\frac{17}{6}\cdot\frac{3}{1}=\frac{17}{2}\cdot\frac{1}{1}=\frac{17}{2}\)
b) \(\left(\frac{5}{2}-\frac{1}{3}\right)\cdot\frac{9}{2}-\frac{6}{7}=\left(\frac{15}{6}-\frac{2}{6}\right)\cdot\frac{9}{2}-\frac{6}{7}\)
\(=\frac{13}{6}\cdot\frac{9}{2}-\frac{6}{7}=\frac{13}{2}\cdot\frac{3}{2}-\frac{6}{7}=\frac{39}{4}-\frac{6}{7}=\frac{273}{28}-\frac{24}{28}=\frac{249}{28}\)
a) \(\frac{51}{3}-\frac{22}{3}=\frac{51-22}{3}=\frac{29}{3}\)
b) \(\frac{5}{12}+\frac{5}{6}-\frac{3}{4}=\frac{5}{12}+\frac{10}{12}-\frac{9}{12}=\frac{5+10-9}{12}=\frac{6}{12}=\frac{1}{2}\)
c) \(1-\left(\frac{1}{5}+\frac{1}{2}\right)=\frac{10}{10}-\frac{2}{10}-\frac{5}{10}=\frac{10-5-2}{10}=\frac{3}{10}\)
d) \(\frac{111}{4}-\left(\frac{25}{7}+\frac{51}{4}\right)=\frac{777}{28}-\frac{60}{28}-\frac{357}{28}=\frac{360}{28}=\frac{90}{7}\)
e) \(\left(\frac{85}{11}+\frac{35}{7}\right)-\frac{35}{11}=\left(\frac{85}{11}-\frac{35}{11}\right)+\frac{35}{7}=\frac{50}{11}-\frac{35}{7}=\frac{350}{77}-\frac{385}{77}=-\frac{35}{77}\)
bài ý dễ ợt à bạn học toán nâng cao đúng ko mình bận học nâng cao lp 5 ko làm đc vì mẹ mình gọi sorry nha
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}=\frac{200}{201}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x\left(x+1\right)}=\frac{200}{201}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{200}{201}\)
\(1-\frac{1}{x+1}=\frac{200}{201}\)
=> \(\frac{1}{x+1}=1-\frac{200}{201}=\frac{1}{201}\)
=> x + 1 = 201
=> x = 201 - 1
=> x = 200