Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+..........+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{11.12}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...........+\frac{1}{11}-\frac{1}{12}\)
\(=1-\frac{1}{12}\)
\(=\frac{11}{12}\)
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{132}=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{11\cdot12}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{3}-\frac{1}{12}=\frac{4}{12}-\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
Chú ý: \(\cdot=\times\)
Đặt \(A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)
\(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)
\(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{12}=\frac{1}{4}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{11\cdot12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{1}-\frac{1}{12}\)
\(=\frac{11}{12}\)
P/s : chả cần giải thick vì cái này nó sẵn cơ bản rồi.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\)
1/2 + 1/6 + 1/12 + ... + 1/132
= 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/11.12
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/11 - 1/12
= 1 - 1/12
= 11/12
1/90 + 1/110 + 1/132 + ... + 1/10100
= 1/9.10 + 1/10.11 + 1/11.12 + ... + 1/100.101
= ... [như trên]
= 1/9 - 1/100
= 49/450
1/12 + 1/20 + ... + 1/132
= 1/3×4 + 1/4×5 + ... + 1/11×12
= 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/11 - 1/12
= 1/3 - 1/12
= 4/12 - 1/12
= 3/12 = 1/4
ta có:
1/6+1/12+1/20+1/30+.........+1/90+1/110
= 1/2x3+1/3x4+1/4x5+1/5x6+....+1/9x10+1/10x11
= 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+....+1/9-1/10+1/10-1/11
=1/2-1/11=11/22-2/22=9/22
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\left(\frac{1}{2}-\frac{1}{11}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{10}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-......+\frac{1}{10}-\frac{1}{11}.\)
=\(\frac{1}{2}-\frac{1}{11}\)
=\(\frac{9}{22}.\)
Là sao mik chả hỉu gì cả??????
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
= \(1-\frac{1}{12}=\frac{11}{12}\)