Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{2}\)(\(x\) - \(\dfrac{5}{3}\)) - \(\dfrac{4}{5}\) = \(x\) + 1
\(\dfrac{3}{2}\) \(x\) - \(\dfrac{15}{6}\) - \(\dfrac{4}{5}\) = \(x\) + 1
\(\dfrac{3}{2}\)\(x\) - \(x\) = 1 + \(\dfrac{15}{6}\) + \(\dfrac{4}{5}\)
\(\dfrac{1}{2}\)\(x\) =\(\dfrac{43}{10}\)
\(x\) = \(\dfrac{43}{10}\) \(\times\) 2
\(x\) = \(\dfrac{43}{5}\)
\(\dfrac{3}{2}\left(x-\dfrac{5}{3}\right)-\dfrac{4}{5}=x+1\\ \Rightarrow\dfrac{3.\left(x-\dfrac{5}{3}\right)}{2}-\dfrac{4}{5}=x+1\\ \Rightarrow\dfrac{3x-5}{2}-\dfrac{4}{5}=x+1\Rightarrow\dfrac{5\left(3x-5\right)}{10}-\dfrac{8}{10}=x+1\\ \Rightarrow\dfrac{15x-33}{10}=x+1\\ \Rightarrow\dfrac{15x-33}{10}-x=x+1\\ \Rightarrow\dfrac{15x-33}{10}=x+1-x\\ \Rightarrow5x-33=10\\ \Rightarrow5x=10+33\\\Rightarrow5x=43\\ \Rightarrow x=\dfrac{43}{5} \)
b) 1-3+5-7+9-11+......+2005-2007
=(1-3)+(5-7)+(9-11)+.....+(2005-2007)
=(-2)+(-2)+(-2)+......+(-2)
=(-2).1004
=(-2008)
c) 1+2+3-4-5-6+7+8+9-10-11-12+...+97+98+99-100-101-102
=(1+2+3-4-5-6)+(7+8+9-10-11-12)+.....+(97+98+99-100-101-102)
=(-9)+(-9)+....+(-9)
=(-9).17
=(-153)
Xin lỗi nha 2 dòng cuối mk làm sai
b)1-3+5-7+9-11+......+2005-2007
=(1-3)+(5-7)+(9-11)+....+(2005-2007)
=(-2)+(-2)+(-2)+....+(-2)
=(-2).502
=(-1004)
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1963}-1\right)\)
\(=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{1963}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1962}{1963}\)
\(=\frac{1}{1963}\)
(2/3.5/7 + 2/3: 7/2). -1/3
=(10/21 + 2/3x2/7 ) . -1/3
=(10/21 + 4/21) . -1/3
=-10/63 - 4/63
=-14/63
(2/3.5/7+2/3:7/2)-1/3
=(2/3.5/7+2/3x2/7)-1/3
=[2/3.(5/7+2/7)]-1/3
=[2/3x1]-1/3
=2/3-1/3
=1/3
HT
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2140.2141}\)
Có \(\frac{1}{2^3}< \frac{1}{2.3};\frac{1}{3^3}< \frac{1}{3.4};...;\frac{1}{2140^3}< \frac{1}{2140.2141}\)
\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< A\). Từ đó ta tính được A
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2140}-\frac{1}{2141}\)
\(A=\frac{1}{2}-\frac{1}{2141}\Rightarrow A>\frac{1}{2}\). Mà \(\frac{1}{2}< \frac{2}{3}\Rightarrow A< \frac{2}{3}\)
Có \(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< A\Rightarrow\)\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< \frac{2}{3}\)
=[\(\left(\frac{2}{3}.\frac{5}{7}+\frac{2}{3}.\frac{2}{7}\right).\left(\frac{-1}{3}\right)\)]
=[\(\left(\frac{2}{3}\right).\left(\frac{5}{7}+\frac{2}{7}\right).\left(\frac{-1}{3}\right)\)]
=[\(\left(\frac{2}{3}.1\right).\frac{-1}{3}\)]
=\(\frac{-1}{3}\)
3333333333333333333333333333333333333333333333333333333333333333333333333333