Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
\(\left\{{}\begin{matrix}x^2\ge0\forall x\\\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x^2=0\Rightarrow x=0\\\left(y-\dfrac{1}{10}\right)^4=0\Rightarrow y-\dfrac{1}{10}=0\Rightarrow y=\dfrac{1}{10}\end{matrix}\right.\)
\(\left(\dfrac{1}{2x-5}\right)+\left(y^2-\dfrac{1}{4}\right)^{10}< 0\)
\(\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
Mà: \(\left(\dfrac{1}{2x-5}\right)+\left(y^2-\dfrac{1}{4}\right)^{10}< 0\)
\(\Rightarrow\dfrac{1}{2x-5}< 0\)
\(\Rightarrow2x-5< 0\Rightarrow2x< 5\Rightarrow x< \dfrac{5}{2}\)
Vậy xảy ra khi:
\(x< \dfrac{5}{2}\) \(y\in R\)\(\left|\dfrac{1}{2x-5}\right|>\left|\left(y^2-\dfrac{1}{4}\right)^{10}\right|\)
1/2^0+1/2^1+1/2^2+.....+1/2^10
2xA=2x(1/2^0+1/2^1+......+1/2^10)
2xA=1+1/2^2+......+1/2^11
2xA-A=(1+1/2^2+...+1/2^11)-(1/2^0+1/2^1+....+1/2^10)
A=1+1/2^2+......+1/2^11-1/2^0-1/2^1-.....-1/2^10
=>A=1-1/2^10
vậy A= 1-1/2^10
a; \(x\) - \(\dfrac{3}{5}\) = 1 - \(\dfrac{4}{5}\) + \(\dfrac{1}{6}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{30}{30}\) - \(\dfrac{24}{30}\) + \(\dfrac{5}{30}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{6}{30}\) + \(\dfrac{5}{30}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{11}{30}\)
\(x\) = \(\dfrac{11}{30}\) + \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{11}{30}\) + \(\dfrac{18}{30}\)
\(x\) = \(\dfrac{29}{30}\)
Vậy \(x\) = \(\dfrac{29}{30}\)
b; (- \(\dfrac{10}{4}\)) + \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\) thế \(x\) của em đâu nhỉ???
c; - \(\dfrac{3}{2}\) + (\(x\) - \(\dfrac{1}{2}\)) = \(\dfrac{1}{2}\)
\(x\) - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) + \(\dfrac{3}{2}\)
\(x\) - \(\dfrac{1}{2}\) = 2
\(x\) = 2 + \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{4}{2}\) + \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
Đặt: \(A=\left(\frac{1}{2}\right)^0+\left(\frac{1}{2}\right)^1+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{10}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\)
=> \(2A=2+1+\frac{1}{2}+....+\frac{1}{2^9}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
=> \(A=2-\frac{1}{2^{10}}\)
Cảm ơn bạn nhiều nhoa!!!