Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\)+ \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)+ \(\dfrac{1}{128}\)
A\(\times\)2 = 2 + 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 2 - \(\dfrac{1}{128}\)
A \(\times\)( 2-1) = \(\dfrac{255}{128}\)
A = \(\dfrac{255}{128}\)
Gọi \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là T
\(T=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2T=2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\)
\(2T-T=\left(2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(T=2+\left(1-1\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+....+\left(\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(T=2+0+0+...-\dfrac{1}{128}\)
\(T=\dfrac{256}{128}-\dfrac{1}{128}\)
\(T=\dfrac{255}{128}\)
1/128 * 2 = 1/64
1/64 * 2 = 1/32
1/32 * 2 = 1/16
...
1/4 * 2 = 1/2
1/2 * 2 = 1
Mà A chỉ có một số hạng 1/128 nên tính ra được 127/128
Đặt A = 1/2+1/4+1/8+1/18+1/32+1/64+1/128+1/256
=> 2A = 1+1/2+1/4+1/8+1/18+1/32+1/64+1/128
=> 2A - A = 1 - 1/256
=> A = 255/256 nhé!
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2009}\)
\(=\frac{1}{\frac{2\cdot\left(1+2\right)}{2}}+\frac{1}{\frac{3\cdot\left(3+1\right)}{2}}+\frac{1}{\frac{4\cdot\left(4+1\right)}{2}}+...+\frac{1}{\frac{2009\cdot\left(2009+1\right)}{2}}\)
\(=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{2009\cdot2010}\)
\(=2\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=1-\frac{1}{1005}\)
\(=\frac{1004}{1005}\)
1/1+2=3=1/1+2+2=6=1/1+2+3+4=10+3+6=19+1/1+2+3+4=29+3+6+10+19+2009=2076nếu mình làm sai thì nhớ chỉ dùm
nhớ kết bạn với mình nhé
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
Đặt A=1/2+1/4+...+1/128
=1/2+(1/2)^2+...+(1/2)^7
=>2A=1+1/2+...+(1/2)^6
=>2A-A=1+1/2+...+(1/2)^6-1/2-1/4-...-1/128
=>A=1-1/128=127/128
ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{x}.\)
\(A=1+\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{x}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2.2}+...+\frac{1}{x:2}\)
\(\Rightarrow2A-A=2-\frac{1}{x}\)
\(A=2-\frac{1}{x}=\frac{4095}{2048}\)
=> 1/x = 1/2048
=> x = 2048 ( 2048 = 211 )
Sửa đề :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
Bài làm :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(=\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{128}-\frac{1}{256}\)
\(=\frac{1}{4}-\frac{1}{256}=\frac{63}{256}\)
1/2 + 1/4 + 1/8 + … + 1/128
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + … + 1/64 - 1/128
= 1 - 1/128
= 128/128 - 1/128
= 127/128
Chúc bạn học tốt.
😁😁😁
cảm ơn nguyễn phú tài