Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A bằng biểu thức trong ngoặc
\(2A=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{10-8}{8.9.10}\)
\(2A=\dfrac{1}{2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{9.10}=\dfrac{44}{90}\)
\(A=\dfrac{22}{90}\)
\(x=\dfrac{23}{45}:A=\dfrac{23}{45}:\dfrac{22}{90}=\dfrac{23}{11}=2\dfrac{1}{11}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}.\frac{44}{90}.x=\frac{23}{45}\Rightarrow\frac{11}{45}.x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
(1/1.2.3 + 1/2.3.4 + ... + 1/8.9.10).x = 23/45
(2/1.2.3 + 2/2.3.4 + ... + 2/8.9.10).x = 2.23/45
(1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/8.9 - 1/9.10).x = 46/45
(1/1.2 - 1/9.10).x = 46/45
(1/2 - 1/90).x = 46/45
(45/90 - 1/90).x = 46/45
22/45.x = 46/45
x = 46/45 : 22/45
x = 46/45 . 45/22
x = 23/11
=2.(1/1-1/2-1/3+1/2-1/3-1/4+...+1/8-1/9-1/10).x=2.23/45
=(1/1-1/10).x=46/45
=9/10.x=46/45
=x=46/45:9/10
=x=92/81:2=46/81.
k cho mình nha!!!"
Lời giải:
Gọi tổng trong ngoặc là $A$
$2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{10-8}{8.9.10}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}$
$=\frac{1}{1.2}-\frac{1}{9.10}=\frac{1}{2}-\frac{1}{90}=\frac{22}{45}$
Vậy $\frac{22}{45}x=\frac{23}{45}$
$\Rightarrow x=\frac{23}{45}: \frac{22}{45}=\frac{23}{22}$
Có \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)+x=\frac{23}{45}\)
Cho \(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\)
Ta có công thức sau: \(\frac{1}{n\cdot\left(n+1\right)}+\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}=\frac{2}{n\cdot\left(n+1\right)\left(n+1\right)}\)
\(\Rightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{8\cdot9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{9\cdot10}=\frac{22}{45}\)
\(\Rightarrow A=\frac{22}{45}:2=\frac{11}{45}\)
Thay vào phép tính trên ta được:
\(\frac{11}{45}\cdot x=\frac{23}{45}\\ x=\frac{23}{45}:\frac{11}{45}\\ x=\frac{23}{11}\)
Vậy \(x=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)
\(\Leftrightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
(1/1.2.3 +1/2.3.4 + ..... + 1/8.9.10).x=23/45
1/2 . (2/1.2.3 + ........+2 / 8.9.10).x=23/45
1/2.x(1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 +.....+1/8.9 - 1/9.10) = 23/45
1/2x(1/2-1/90) = 23/45
x . 22/45 = 23/45 :1/2
x = 46/45 :22/45
x = 23/11