Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*)\(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(\Rightarrow A=2\cdot3+2^3\cdot3+...+2^{2009}\cdot3\)
\(\Rightarrow A=3\cdot\left(2+2^3+...+2^{2009}\right)\)
\(\Rightarrow A⋮3\)
*)\(A=2+2^2+2^3+...+2^{2010}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+262010\right)\)
\(\Rightarrow A=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(\Rightarrow A=2\cdot7+2^4\cdot7+...+2^{2008}\cdot7\)
\(\Rightarrow A=7\cdot\left(2+2^4+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
n^2 - 1 = (n + 1)(n - 1)
Vì n > 2 nên n+1 và n-1 đều lớn hơn 1 ---> n^2 - 1 luôn luôn là hợp số, với mọi n > 2 (n thuộc N)
---> n^2 - 1 và n^2 + 1 không thể đồng thời là số nguyên tố.
Tick nhé
\(A=1+3+3^2+3^3+...+3^{1999}+3^{2000}\)
\(A=3^0+3^1+3^2+3^3+...+3^{1999}+3^{2000}\)
Xét dãy số : 0 ; 1 ; 2 ; 3 ; ... ; 1999 ; 2000
Số số hạng của dãy số trên là :
( 2000 - 0 ) : 1 + 1 = 2001 ( số )
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\) ( 667 cặp số )
\(A=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{1998}.\left(1+3+3^2\right)\)
\(A=1.13+3^3.13+...+3^{1998}.13\)
\(A=\left(1+3^3+...+3^{1998}\right).13\)
=> A chia hết cho 13
Đề kia bị dính vào nhau, các bạn nhìn ảnh cho rõ nhé