K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2020

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1999.2000}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\)

\(=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{1999}+\frac{1}{1999}\right)-\frac{1}{2000}\)

\(=\frac{1}{1}+0+0+...+0-\frac{1}{2000}\)

\(=\frac{1}{1}-\frac{1}{2000}\)

\(=\frac{2000}{2000}-\frac{1}{2000}\)

\(=\frac{1999}{2000}\)

8 tháng 1 2019

\(\Leftrightarrow x.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1999}-\frac{1}{2000}\right)=1\)

\(\Leftrightarrow x.\left(1-\frac{1}{2000}\right)=1\Leftrightarrow x\cdot\frac{1999}{2000}=1\Leftrightarrow x=\frac{2000}{1999}\)

`#3107`

`a)`

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{1999\cdot2000}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\)

\(=1-\dfrac{1}{2000}\)

\(=\dfrac{1999}{2000}\)

`b)`

\(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{100\cdot103}?\)

\(=\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{100\cdot103}\right)\)

\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{102}{103}\)

\(=\dfrac{34}{103}\)

`c)`

\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-....-\dfrac{1}{6}-\dfrac{1}{2}\)

\(=\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)\)

\(=\dfrac{8}{9}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\right)\)

\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)

\(=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)\)

\(=\dfrac{8}{9}-\dfrac{8}{9}\\ =0\)

23 tháng 9 2023

b) Sửa đề:

 \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}.\left(\dfrac{103}{103}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}.\dfrac{102}{103}\)

\(=\dfrac{34}{103}\)

13 tháng 9 2016

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

12 tháng 10 2022

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!

9 tháng 10 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\)\(\frac{1}{9.10}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

ủng hộ mik nha mn

9 tháng 10 2016

=1-1/2+1/2-1/3+1/3-1/4+....+1/9-1/10

=1-1/10

=9/10

Em chao anh anh ket ban voi em nhe

21 tháng 12 2016

ai lm xong đầu tiên tui k cho

29 tháng 8 2015

A=1/1-1/2+1/2-1/3+1/3-1/4+...............+1/99-1/100

A=1/1-1/100

A=100/100-1/100

A=99/100

Mk ko chép đề bài

29 tháng 8 2015

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.+.....+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A==\frac{99}{100}\)

19 tháng 6 2018

Giải:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{x+1}\)

\(\Leftrightarrow A=\dfrac{x}{x+1}\)

Vậy ...

20 tháng 6 2018

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}\\ A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\\ A=1-\dfrac{1}{x+1}\\ A=\dfrac{x}{x+1}\\ \)

Vậy A=\(\dfrac{x}{x+1}\)

10 tháng 2 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+....+\frac{100}{99.100}-\frac{99}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

10 tháng 2 2017

1-1/2+1/2-1/3+1/3-1/4+1/4-..........+1/99-1/100=1-1/100=99/100

10 tháng 2 2017

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)\(\frac{99}{100}\)

10 tháng 2 2017

Ta có công thức : \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)