Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow x-\dfrac{1}{2}=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\Rightarrow x-2=1\)
\(\Rightarrow x=3\)
c) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\).
a , \(\left(x-\dfrac{1}{2}\right)^2=0\)
<=> \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
b , \(\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c , \(\left(2x-1\right)^3=-8\Rightarrow2x-1=-2\Rightarrow x=\dfrac{-1}{2}\)
d , \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4^2}\)
<=> \(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{-1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)
a, Có: \(25^{200}=\left(5^2\right)^{200}=5^{400}\)
Vì \(5^{400}=5^{400}\) mà \(25^{200}=5^{400}\Rightarrow5^{400}=25^{200}\)
c, Có:
a/ 263 và 342
Ta có: 263=(23)21=821
342=(32)21=921
mà 821<921
vậy 263<342
b/5400 và 25200
Ta có: 25200=(52)200=5400
mà 5400=5400
vậy 5400=25200
c/ \(\left(\dfrac{-1}{16}\right)^{100}v\text{à}\left(\dfrac{-1}{2}\right)^{500}\)
Ta có: \(\left(\dfrac{-1}{2}\right)^{500}=\left(\left(\dfrac{-1}{2}\right)^5\right)^{100}=\left(\dfrac{-1}{32}\right)^{100}\)
mà: \(\left(\dfrac{-1}{16}\right)^{100}< \left(\dfrac{-1}{32}\right)^{100}\)
vậy\(\left(\dfrac{-1}{16}\right)^{100}< \left(\dfrac{-1}{2}\right)^{500}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{6480}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{80}-\frac{1}{81}=1-\frac{1}{81}=\frac{80}{81}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{6480}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{80}-\frac{1}{81}\)
\(A=1-\frac{1}{81}\)
\(A=\frac{80}{81}\)
Cái này là toán lớp 6 nha bn
Ủng hộ mk nha ^_-