Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{151}{102}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{2550}\)
\(A=\frac{151}{102}-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\frac{49}{102}\)
\(A=\frac{151-49}{102}\)
\(A=\frac{102}{102}\)
\(A=1\)
Vậy \(A=1\)
Chúc bạn học tốt ~
\(A=\frac{151}{102}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{2550}\)
\(A=\frac{151}{102}-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\frac{49}{102}=1\)
Gọi tổng đó là tổng S
Ta có: S = 1/6+1/12+1/30+1/42+1/56+1/72+1/90
=> S = 1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=> S = 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
=> S = 1/2-1/10
=> S = 5/10-1/10
=> S=4/10
=> S=2/5
\(B=\frac{6}{1\cdot3}+\frac{6}{3\cdot5}+\cdot\cdot\cdot+\frac{6}{97\cdot99}\)
\(\Rightarrow B=3\cdot\left(\frac{2}{1\cdot3}+\cdot\cdot\cdot+\frac{2}{97\cdot99}\right)\)
\(\Rightarrow B=3\cdot\left(1-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow B=3\cdot\left(1-\frac{1}{99}\right)\)
\(\Rightarrow B=3\cdot\frac{98}{99}\)
\(\Rightarrow B=\frac{98}{33}\)
\(A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{42}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{6\cdot7}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=1-\frac{1}{7}\)
\(\Rightarrow A=\frac{6}{7}\)
\(\frac{5}{6}x+\frac{1}{2}-\frac{1}{3}x=0,75x-\frac{7}{8}\)
\(\frac{5}{6}x-\frac{1}{3}x-0,75x=-\frac{7}{8}-\frac{1}{2}\)
\(\frac{5}{6}x-\frac{1}{3}x-\frac{3}{4}x=-\frac{11}{8}\)
\(\frac{1}{2}x-\frac{3}{4}x=-\frac{11}{8}\)
\(-\frac{1}{4}x=-\frac{11}{8}\)
\(x=-\frac{11}{8}:-\frac{1}{4}\)
\(x=\frac{11}{2}\)
\(|x+9|.2=1\)
\(|x+9|=2\)
\(\Rightarrow\orbr{\begin{cases}x+9=2\\x+9=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=-11\end{cases}}}\)
1/
a/ \(100+20b=20\left(5+b\right)\) chia hết cho 20
b/ \(abab=10.ab+ab=11.ab\) chia hết cho ab
3/ Tích trên là tích của 3 số tự nhiên liên tiếp
+ Nếu n chẵn do n>=1 => n chia hết cho 2 => tích trên chia hết cho 2
+ Nếu n lẻ và n chia 2 dư 1 thì n-1 và n+1 chia hết cho 2 => tích trên chia hết cho 2
=> tích trên chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 thì tích trên chia hết cho 3
+ Nếu n chia 3 dư 1 thì n-1 chia hết cho 3 => tích chia hết cho 3
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => tích chia hết cho 3
=> Tích trên chia hết cho 3 với mọi n
Mà 2 và 3 là hai số nguyên tố cùng nhau => tích trên chia hết cho 2x3 tức là chia hết cho 6
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{2550}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{2550}=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{50\cdot51}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\)
\(=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)