K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)

\(\Leftrightarrow16x+40=90+30\)

\(\Leftrightarrow16x=80\)

hay x=5

5 tháng 10 2021

Bài 1 :

[( 35 - 5 ) : 3 ]3 + 3

= [30 : 3]3 + 3

= 103 + 3

= 1000 + 3

= 1003

Đây nha bạn!!!

Chúc bạn học tốt!!!hihi

\(x_1+x_2=x_3+x_4=...=x_{2019}+x_{2020}=2\Rightarrow x_1+x_2+x_3+x_4+...+x_{2019}+x_{2020}=2.1010=2020\)

\(\Rightarrow x_1+x_2+x_3+x_4+...+x_{2019}+x_{2020}+x_{2021}=2020+x_{2021}\)

\(\Rightarrow0=2020+x_{2021}\)

\(\Rightarrow x_{2021}=-2020\)

                                     Vậy \(x_{2021}=-2020\)

14 tháng 7 2021

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{2021}\)

<=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)

<=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)

<=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)

<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{2042}\)

<=> \(\frac{1}{x+1}=\frac{1}{2021}\)

<=> x + 1 = 2021 

<=> x = 2020

16 tháng 7 2021

Có phải là bình 6a3 học trường THCS Nguyễn Trãi đúng không 

30 tháng 7 2020

Đề bạn thiếu 1 số \(x\) nữa đúng không?

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{2021}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2021}\)

\(\Rightarrow x+1=2021\)

\(\Rightarrow x=2020\)

Vậy \(x=2020\).

30 tháng 7 2020

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4042}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2019}{4042}=\frac{1}{2021}\)

\(\Leftrightarrow x+1=2021\)

\(\Leftrightarrow x=2020\left(tm:x\in N\right)\)

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

1 tháng 6 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=1-\frac{1}{2020}\)

\(A=\frac{2019}{2020}\)

1 tháng 6 2019

\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(2B=\frac{2}{1.3}+\frac{2}{3.5}=\frac{2}{5.7}+...+\frac{2}{2017.2019}\)

\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(2B=1-\frac{1}{2019}\)

\(2B=\frac{2018}{2019}\)

\(B=\frac{2018}{2019}:2=\frac{1009}{2019}\)