Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$p>3$ và $p$ nguyên tố nên $p$ lẻ
$\Rightarrow p+1$ chẵn $\Rightarrow p+1\vdots 2(1)$
Mặt khác:
$p>3$ và $p$ nguyên tố nên $p$ không chia hết cho $3$
$\Rightarrow p=3k+1$ hoặc $p=3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái đề bài)
$\Rightarrow p=3k+2$
Khi đó:
$p+1=3k+3\vdots 3(2)$
Từ $(1); (2)$, mà $(2,3)=1$ nên $p+1\vdots (2.3)$ hay $p+1\vdots 6$
Do: n là số tự nhiên nên n(n+1)(n+2) là tích của ba số tự nhiên liên tiếp
Cho nên: trong ba số n, n+1 và n+2 luôn có hai số chia hết cho 2
=>n(n+1)(n+2) chia hết cho 2
Mặt khác: trong ba số n, n+1 và n+2 luôn có 1 số chia hết cho 3
=>n(n+1)(n+2) chia hết cho 3
Mà: 2 và 3 là hai số nguyên tố cùng nhau
Nên: n(n+1)(n+2) chia hết cho BCNN(2;3)=6
Vậy n(n+1)(n+2) chia hết cho 6 với mọi n là số tự nhiên
TL:
n(n+1)(2n+1)
= n(n+1)(n+2+n-1)=
n(n+1)(n+2)+(n-1)(n+1)n
Vì ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
~ học tốt~
A = 10^n + 18n - 1
A = 10^n - 1 - 9n + 27n
A = 99...9 - 9n + 27n
( n chữ số 9)
A = 9.(11...1 - n) + 27n
( n chữ số 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 nên 11...1 - n chia hết cho 3 => 11...1 - n = 3k( k thuộc N)
=> A = 9.3k + 27n
A = 27k + 27n = 27.(k+n) chia hết cho 27
Chứng tỏ A chia hết cho 27 với n là số tự nhiên
A = 10^n + 18n - 1
A = 10^n - 1 - 9n + 27n
A = 99...9 - 9n + 27n
(n chữ số 9)
A = 9.(11...1 - n) + 27n
( n chữ số 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 nên 11...1 - n chia hết cho 3 => 11...1 - n = 3k( k thuộc N)
=> A = 9.3k + 27n
A = 27k + 27n = 27.(k+n) chia hết cho 27
Chứng tỏ A chia hết cho 27 với n là số tự nhiên
Để 111...1 + 2n chia hết cho 3
thì \(\hept{\begin{cases}111...1\text{ }⋮\text{ }3\\2n\text{ }⋮\text{ }3\end{cases}}\)
Ta có 2n chia hết cho 3
mà 2 ko chia hết cho 3
=> n chia hết cho 3
Để 111...1 chia hết cho 3 <=> có n chữ số 1
Vì 1 số có 1 dãy số toàn số 1 có hơn 3 chữ số thì chia hết cho 3 nên số còn lại cũng phải chia hết cho 3.
Suy ra n = 1