Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như đề là thế này :
\(\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)
= \(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)
ta có \(\frac{1}{\sqrt{1.2}}khác\frac{1}{\sqrt{1}+\sqrt{2}}\)
................................
\(\frac{1}{\sqrt{99.100}}khấc\frac{1}{\sqrt{99}+\sqrt{100}}\)
`sqrta+1>sqrt{a+1}`
`<=>a+2sqrta+1>a+1`
`<=>2sqrta>0`
`<=>sqrta>0AAa>0`
`sqrt{a-1}<sqrta`
`<=>a-1<a`
`<=>-1<0` luôn đúng
`sqrt6-1>sqrt3-sqrt2`
`<=>sqrt6-sqrt3+sqrt2-1>0`
`<=>sqrt3(sqrt2-1)+sqrt2-1>0`
`<=>(sqrt2-1)(sqrt3+1)>0` luôn đúng
Cách 3 :
\(a+b+c\ge2+abc\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge6+3abc\)
Từ điều kiện ta có thể suy ra : \(a+b+c\ge3\)
Từ đó ta có : \(6\le\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Đến đây ta cần chứng minh : \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)+3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)(Đây là hệ quả của Cô-si)
Ta có: \(a^2+b^2+c^2\ge ab+bc+ac\ge3\sqrt[3]{a^2b^2+b^2c^2+c^2a^2}\)
=> \(\hept{\begin{cases}a^2+b^2+c^2\ge3\\1\ge abc\end{cases}}\)
Có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3+6=9\)
=> \(a+b+c\ge3=2+1\ge2+abc\)
Thế này phải ko?
\(\left(a+b\right)^2.\frac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}\)
ta có: a−√a+14 =(√a−12 )2≥0 (1)
b−√b+14 =(√b−12 )2≥0(2)
từ (1),(2)=.>a+b−√a−√b+12 ≥0
⇒a+b+12 ≥√a+√b (3)
Mà a+b≥2√ab (BĐT cauchy cho a>0;b>0) (4)
từ(3),(4) => (a+b)(a+b+12 )≥2√ab(√a+√b)
⇔(a+b)2+a+b2 ≥2a√b+2b√a
=>đpcm
Đúng vì
theo định lý Thằngthầnkinhngáođá Nên biểu thức sau đúng ngoài ra định lý này còn rất khó nữa
sai bét nếu nói theo toán học thông thường