K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

\(\begin{cases}xy+x+y=11\\x^2y+xy^2=30\end{cases}\)

ta đặt S=x+y và P=xy. hệ trở thành : 

\(\begin{cases}P+S=11\\PS=30\end{cases}\)<=>\(\left[\begin{array}{nghiempt}S=5;P=6\\S=6;P=5\end{array}\right.\)

với S=5;P=6

theo định lí vi et đảo 

thì nghiện (x;y) là (1;5),(5;1)

với S=6;P=5 theo định lí viet đảo 

thì nghiệm (x;y) là (3;2),(2;3)

KL: có 4 cặp nghiệm (x;y) là ,,,,,,,,,

21 tháng 7 2017

nhầm toán lớp 10 nhé

NV
23 tháng 11 2019

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=11\\\left(x+y\right)xy=30\end{matrix}\right.\)

Theo Viet đảo, \(x+y\)\(xy\) là nghiệm của:

\(t^2-11t+30=0\Rightarrow\left[{}\begin{matrix}t=6\\t=5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=6\\xy=5\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=5\\xy=6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(5;1\right);\left(2;3\right);\left(3;2\right)\)

23 tháng 11 2019

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

Đặt \(x+y=S;xy=P\Rightarrow\left\{{}\begin{matrix}P+S=11\\P.S=30\end{matrix}\right.\)

\(\Rightarrow\frac{30}{S}+S=11\Leftrightarrow30+S^2=11S\Leftrightarrow\left[{}\begin{matrix}S=6\\S=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}P=5\\P=6\end{matrix}\right.\)

Xét \(\left\{{}\begin{matrix}P=6\\S=5\end{matrix}\right.\Rightarrow X^2-5X+6=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\end{matrix}\right.\)

Làm tương tự vs trường hợp còn lại

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \)

\(\begin{array}{l} \Rightarrow 11{x^2} - 14x - 12 = 3{x^2} + 4x - 7\\ \Rightarrow 8{x^2} - 18x - 5 = 0\end{array}\)

\( \Rightarrow x =  - \frac{1}{4}\) và \(x = \frac{5}{2}\)

Thay nghiệm vừa tìm được vào phương trình \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \) ta thấy chỉ có nghiệm \(x = \frac{5}{2}\) thảo mãn phương trình

Vậy nhiệm của phương trình đã cho là \(x = \frac{5}{2}\)

b) \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)

\(\begin{array}{l} \Rightarrow {x^2} + x - 42 = 2x - 3\\ \Rightarrow {x^2} - x - 12 = 0\end{array}\)

\( \Rightarrow x =  - 3\) và \(x = 4\)

Thay vào phương trình \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)  ta thấy  không có nghiệm nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

c) \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \)

\(\begin{array}{l} \Rightarrow 4.\left( {{x^2} - x - 1} \right) = {x^2} + 2x + 5\\ \Rightarrow 3{x^2} - 6x - 9 = 0\end{array}\)

\( \Rightarrow x =  - 1\) và \(x = 3\)

Thay hai nghiệm trên vào phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) ta thấy cả hai nghiệm đếu thỏa mãn phương trình

Vậy nghiệm của phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) là \(x =  - 1\) và \(x = 3\)

d) \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\)

\(\begin{array}{l} \Rightarrow 3\sqrt {{x^2} + x - 1}  = \sqrt {7{x^2} + 2x - 5} \\ \Rightarrow 9.\left( {{x^2} + x - 1} \right) = 7{x^2} + 2x - 5\\ \Rightarrow 2{x^2} + 7x - 4 = 0\end{array}\)

\( \Rightarrow x =  - 4\) và \(x = \frac{1}{2}\)

Thay hai nghiệm trên vào phương trình \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\) ta thấy chỉ có nghiệm \(x =  - 4\) thỏa mãn phương trình

Vậy nghiệm của phương trình trên là \(x =  - 4\)

2 tháng 9 2018

\(D=\left\{x=\left(3n\right)^2|n\in N;1\le n\le4\right\}\)

\(C=\left\{x=\left(-3\right)^n|n\in N;1\le n\le4\right\}\)

\(E=\){x\(\in N^{''}|x\) là các số nguyên tố \(\le\)11}

G={x=\(\dfrac{1}{n+n^2}|n\in N'';n\le5\)}

\(H=\left\{x=\dfrac{3}{3^n}|n\in N'';n\le5\right\}\)

N'' là N sao đó

D={x=k2;3<=k<=12; k chia hết cho 3}

E={x=(-3)k;1<=k<=4}

G={1/x(x+1);x∈N;1<=x<=5}