Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3x^2+5y^2=345\)
\(\Leftrightarrow3x^2\le345\Leftrightarrow x^2\le\frac{345}{3}=115\)
Ta cũng từ phương trình trên suy ra \(x^2\)là số chính phương chia hết cho 5
\(\Rightarrow x^2=0;25;100\)
(1) \(x^2=0\Rightarrow y^2=69\)( không thỏa mãn vì y nguyên )
(2) \(x^2=25\Rightarrow y^2=54\)( không thỏa vì y nguyên )
(3) \(x^2=100\Rightarrow y^2=9\)
Vậy phương trình \(3x^2+5y^2=345\)có nghiệm nguyên \(\left(x;y\right)=\left(-10;-3\right);\left(10;-3\right);\left(-10;3\right)\)\(;\left(10;3\right)\)
\(x^2-2x+1-y^2=12\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=12\)
đến đây lập luận ước của 12 bạn tự làm nốt nha
\(6x^2-9xy+10x-15y\\ =3x\left(2x-3y\right)+5\left(2x-3y\right)\\ =\left(3x+5\right)\left(2x-3y\right)\\ 27x^3+36x^2y+12xy^2\\ =3x\left(9x^2+12xy+4y^2\right)\\ =3x\left(3x+2y\right)^2\)
a) \(6x^2-9xy+10x-15y=\left(6x^2-9xy\right)+\left(10x-15y\right)\)
\(=3x\left(2x-3y\right)+5\left(2x-3y\right)\)
\(=\left(3x+5\right)\left(2x-3y\right)\)
b) \(27x^3+36x^2y+12xy^2=3x\left(9x^2+12xy+4y^2\right)\)
\(=3x\left[\left(3x\right)^2+2\cdot3x\cdot2y+\left(2y\right)^2\right]\)
\(=3x\left(3x+2y\right)^2\)
\(\)
\(x^3-y^3-2y^2-3y-1=0\)
\(<=>x^3=y^3+2y^2+3y+1\)≤\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)
Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)
Từ (1) và (2)
\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)
\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)
Xong giải ra thôi
Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời
Ta có:\(10x^2-12xy+5y^2+11y-36x+38\)
=\(9x^2-12xy+4y^2+x^2-36x+324+y^2+2.\frac{11}{2}y+\frac{11^2}{4}-\frac{1265}{4}\)
=\(\left(3x-2y\right)^2+\left(x-18\right)^2+\left(y+\frac{11}{2}\right)^2-\frac{1265}{4}\)
Xin lỗi nha mình quỳ zồi