K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

10x : 5y = 20y

10x = 20y . 5y

10x = 100xy

10x - 100xy = 0

10x ( 1 - 10y ) = 0

\(\Rightarrow\orbr{\begin{cases}10x=0\\1-10y=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}\)

21 tháng 9 2018

b) 1x + 2x + 3x + ...+ 2017x = 2018 . 2019

x.(1+2+3+...+2017) = 2018 . 2019

x.2 035 153 = 2018.2019

x = 4038/2017

18 tháng 1 2018

b) | x2+|6x-2 | | = x2+4 sai

18 tháng 1 2018

https://olm.vn/hoi-dap/question/402206.html

15 tháng 10 2018

\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)

\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)

\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\) 

\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\) 

20 tháng 8 2020

Nhanh nhé các bn, mai mik phải nộp r...huhu

20 tháng 8 2020

a) | x2 + 2 | + | x2 + 1 | = x2 + 2 + x2 + 1 = 2x2 + 3

b) | 2x - 3 | + | 3x - 2 | = 2x - 3 + 3x - 2 = 5x - 5 = 5( x - 1 ) với x > 2

c) | x - 4 | + | 5 - x | = -( x - 4 ) + 5 - x = -x + 4 + 5 - x = -2x + 9 ( với 4 > x )

d) | 1 - x2 | - | 1 + x2 | = -( 1 - x2 ) - ( 1 + x2 ) = -1 + x2 - 1 - x2 = -2 ( với x > 1 )

11 tháng 9 2018

 là 3 nếu X là 2018

27 tháng 7 2020

Trả lời:

\(\left(\frac{2}{3}x-\frac{4}{9}\right).\left[\frac{1}{2}+\left(-\frac{3}{7}\right)\div x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}+\left(-\frac{3}{7}\right)\div x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x=\frac{4}{9}\\\frac{-3}{7}\div x=\frac{-1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{6}{7}\end{cases}}\)

Vậy \(x\in\left\{\frac{2}{5},\frac{6}{7}\right\}\)

Học tốt nhé 

27 tháng 7 2020

Trả lời :

\(\left(\frac{2}{3}x-\frac{4}{9}\right)\times\left(\frac{1}{2}-\frac{3}{7}\div x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}-\frac{3}{7}\div x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}x=\frac{4}{9}\\\frac{3}{7}\div x=\frac{1}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{6}{7}\end{cases}}\)

18 tháng 8 2017

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{-30}{15}=-2\)

\(\Rightarrow\hept{\begin{cases}3x=\left(-2\right).63=-126\Rightarrow x=-\frac{126}{3}=-42\\7y=\left(-2\right).98=-196\Rightarrow y=-\frac{196}{7}=-28\\5z=\left(-2\right).50=-100\Rightarrow z=-\frac{100}{5}=-20\end{cases}}\)

Vậy \(x=-42;y=-28;z=-20\).

18 tháng 8 2017

Ta có : 

2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14};\)\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\)\(\frac{3x-7y+5z}{63-98+50}\)\(=\frac{-30}{15}=-2\)

\(\frac{x}{21}=-2\Rightarrow x=-42\)

\(\frac{y}{14}=-2\Rightarrow y=-28\)

\(\frac{z}{10}=-2\Rightarrow z=-20\)

Vậy x;y;z lần lượt là -42;-28;-20

18 tháng 10 2018

Vì \(|3x^2-27|\ge0\)\(\forall x\)\(\Rightarrow|3x^2-27|^{2019}\ge0\)\(\forall x\)

     \(\left(5y+12\right)^{2018}\ge0\)\(\forall y\)

\(\Rightarrow|3x^2-27|^{2019}+\left(5y+12\right)^{2018}\ge0\)\(\forall x,y\)

mà \(|3x^2-27|^{2019}+\left(5y+12\right)^{2018}=0\)

\(\Rightarrow\)Dấu = chỉ xảy ra khi \(|3x^2-27|^{2019}=0\)và \(\left(5y+12\right)^{2018}=0\)

\(\Rightarrow|3x^2-27|=0\)và \(5y+12=0\)

\(\Rightarrow3x^2-27=0\)và \(5y=-12\)

\(\Rightarrow3x^2=27\)và \(y=\frac{-12}{5}\)

\(\Rightarrow x^2=9\)và \(y=\frac{-12}{5}\)

\(\Rightarrow x=3\)hoặc \(x=-3\)và \(y=\frac{-12}{5}\)