K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ đó

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Áp dụng:

a) 12,08;

b) 5,83;

c) 10,95.

2 tháng 11 2021

Tham khảo: Bài 4.8 trang 211 Sách bài tập Đại số và giải tích 11: Chứng minh rằng với |x| rất bé so với

2 tháng 11 2021

Tham khảo cách giải:

Đặt \(x\left(y\right)=\sqrt{a^2+x}\) ta có:

\(y'\left(x\right)=\dfrac{\left(a^2+x\right)'}{2\sqrt{a^2+x}}=\dfrac{1}{2\sqrt{a^2+x}}\)

Từ đó:

\(\Delta y=y\left(x\right)-y\left(0\right)\approx y'\left(0\right)x\)

\(\Rightarrow\sqrt{a^2+x}-\sqrt{a^2+0}\approx\dfrac{1}{2\sqrt{a^2+0}}x\)

\(\Rightarrow\sqrt{a^2+x}-a\approx\dfrac{x}{2a}\)

\(\Rightarrow\sqrt{a^2+x}\approx a+\dfrac{x}{2a}\)

Áp dụng :

\(\sqrt{146}=\sqrt{12^2+2}\)

\(\approx12+\dfrac{2}{2.12}\approx12,0833\)

NV
27 tháng 1 2021

\(\left\{{}\begin{matrix}u_1.u_1.q.u_1.q^2=4096\\u_1.\dfrac{q^3-1}{q-1}=56\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(u_1q\right)^3=4096\\u_1\left(q^2+q+1\right)=56\end{matrix}\right.\)

\(\left\{{}\begin{matrix}u_1q=16\\u_1\left(q^2+q+1\right)=56\end{matrix}\right.\)

\(\Rightarrow\dfrac{16}{q}\left(q^2+q+1\right)=56\)

\(\Leftrightarrow16q^2-40q+16=0\Rightarrow\left[{}\begin{matrix}q=1\\q=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow u_1=8\)

27 tháng 1 2021

\(\left\{{}\begin{matrix}u_1u_1u_1qq^2=4096\\u_1+u_1q+u_1q^2=56\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1^3q^3=4096\\u_1\left(1+q+q^2\right)=56\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}u_1q=16\\u_1\left(1+q+q^2\right)=56\end{matrix}\right.\)

\(\Rightarrow\dfrac{1+q+q^2}{q}=\dfrac{7}{2}\Leftrightarrow2+2q+2q^2=7q\Rightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\left(loai\right)\end{matrix}\right.\)

\(\Rightarrow u_1=\dfrac{16}{2}=8\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) • Ta có: M ∈ b và (P) ∩ (Q) = b;

Suy ra M ∈ (P).

Mà M ∈ (M, a)

Do đó M là giao điểm của (P) và (M, a).

Lại có b’ = (P) ∩ (M, a)

Suy ra đường thẳng b’ đi qua M.

Tương tự ta cũng chứng minh được b’’ đi qua điểm M.

• Ta có: a // (P);

             a ⊂ (M, a)

             (M, a) ∩ (P) = b’

Do đó a // b’.

Tương tự ta cũng có a // b’’.

Do đó b’ // b’’.

Mặt khác: (P) ∩ (Q) = b;

                 (M, a) ∩ (P) = b’;

                 (M, a) ∩ (Q) = b’’;

                 b // b’’.

Do đó b // b’ // b’’.

Mà cả ba đường thẳng cùng đi qua điểm M nên ba đường thẳng này trùng nhau.

b) Vì a // b’ nên a // b (do b ≡ b’).

22 tháng 8 2023

tham khảo

Ta có:\(a//\left(P\right)\)

         \(a//\left(Q\right)\)

        \(\left(P\right)\cap\left(Q\right)=b\)

Do đó theo hệ quả định lí \(2\) ta có \(a//b\).

Gọi ba số hạng liên tiếp lần lượt là a-n;a;a+n

Theo đề, ta có: a-n+a+a+n=27 và (a-n)(a+n)=56

=>a=9 và (9-n)(9+n)=56

=>a=9 và \(n\in\left\{5;-5\right\}\)

Bài 3: 

Đặt a/5=b/4=k

=>a=5k; b=4k

\(a^2-b^2=1\)

\(\Leftrightarrow9k^2=1\)

\(\Leftrightarrow k^2=\dfrac{1}{9}\)

Trường hợp 1: k=1/3

=>a=5/3; b=4/3

Trường hợp 2: k=-1/3

=>a=-5/3; b=-4/3

17 tháng 2 2017

Chọn C

8 tháng 4 2019

Đáp án là D

Ta có 

Theo giả thiết

Từ (1) và (2) suy ra