Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
\(\left(x-2\right)\left(x-4\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2< 0\\x-4>0\end{matrix}\right.=>4< x< 2\left(1\right)\\\left\{{}\begin{matrix}x-2>0\\x-4< 0\end{matrix}\right.=>2< x< 4\left(2\right)}\end{matrix}\right.\)(1 ) vô lý=> loại
=> (x-2).(x-4)<0 <=> 2<x<4
b. ta có\(x^2+1>0\forall x\)
=>(x2 -1).(x2+1)<0 <=> (x2 -1)<0 <=> x2<1
<=> -1<x<1
câu c bạn làm tương tự
P = (1-1/2).(1-1/3).(1-1/4)...(1-1/99) = 1/2 . 2/3 . 3/4 ... 98/99 = 1/99
Ta có :
\(P=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right).................\left(1-\dfrac{1}{99}\right)\)
\(P=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)...............\left(\dfrac{99}{99}-\dfrac{1}{99}\right)\)
\(P=\dfrac{1}{2}.\dfrac{2}{3}..................\dfrac{98}{99}\)
\(P=\dfrac{1}{99}\)
~ Học tốt ~
có 1 con mèo vì còn lại là 3 cái ảnh của mèo qua gương đặt ở 4 góc tường
M=\(\dfrac{1919\times171717}{191919\times1717}\) và N=\(\dfrac{18}{19}\)
Ta có :
M= \(\dfrac{1919\times171717}{191919\times1717}\)
M=\(\dfrac{19\times17}{19\times17}\)
M= 1
Mà N= \(\dfrac{18}{19}\)
Vì: 1>\(\dfrac{18}{19}\)
\(\Rightarrow\)\(\dfrac{1919\times171717}{191919\times1717}\) > \(\dfrac{18}{19}\)
\(\Rightarrow\)M > N
A=\(\dfrac{5^{12}+1}{5^{13}+1}\) và B =\(\dfrac{5^{11}+1}{5^{12}+1}\)
Ta có:
A=\(\dfrac{5^{12}+1}{5^{13}+1}\)
\(\Rightarrow\)5.A=5.\(\dfrac{5^{12}+1}{5^{13}+1}\)
=\(\dfrac{5.\left(5^{12}+1\right)}{5^{13}+1}\)
=\(\dfrac{5^{13}+6}{5^{13}+1}\)
=\(\dfrac{\left(5^{13}+1\right)+6}{5^{13}+1}\)
=\(\dfrac{5^{13}+1}{5^{13}+1}\) + \(\dfrac{6}{5^{13}+1}\)
= 1 + \(\dfrac{6}{5^{13}+1}\)
B=\(\dfrac{5^{11}+1}{5^{12}+1}\)
\(\Rightarrow\)5.B = 5.\(\dfrac{5^{11}+1}{5^{12}+1}\)
=\(\dfrac{5.\left(5^{11}+1\right)}{5^{12}+1}\)
=\(\dfrac{5^{12}+6}{5^{12}+1}\)
=\(\dfrac{\left(5^{12}+1\right)+5}{5^{12}+1}\)
=\(\dfrac{5^{12}+1}{5^{12}+1}\) + \(\dfrac{5}{5^{12}+1}\)
= 1 + \(\dfrac{5}{5^{12}+1}\)
Vì: \(5^{13}+1\) > \(5^{12}+1\)
\(\Rightarrow\) \(\dfrac{5}{5^{13}+1}\) < \(\dfrac{5}{5^{12}+1}\)
\(\Rightarrow\) 1+\(\dfrac{5}{5^{13}+1}\) < 1+\(\dfrac{5}{5^{12}+1}\)
\(\Rightarrow\) 5.A < 5.B
\(\Rightarrow\) A < b
đáp số 99830
99829