Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x=9 => 10=x+1
Thay vào ta có:
\(Q\left(x\right)=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}...-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...-x^2-x+x+1=1\)
Bài 1:
a: \(\Leftrightarrow x^2-4x-x^2+8=0\)
=>-4x+8=0
hay x=2
b: \(\Leftrightarrow3x^2-3x+2x-2-3\left(x^2-x-2\right)=4\)
\(\Leftrightarrow3x^2-x-2-3x^2+3x+6=4\)
=>2x+4=4
hay x=0
a: \(\left(ax+1\right)\left(ax+b\right)=x^2+7\)
\(\Leftrightarrow a^2x^2+abx+ax+b=x^2+7\)
\(\Leftrightarrow a^2x^2+ax\left(b+1\right)+b=x^2+7\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=1\\b=7\\a\left(b+1\right)=0\end{matrix}\right.\Leftrightarrow\left(a,b\right)\in\varnothing\)
b: \(\Leftrightarrow ax^3+acx^2+ax+x^2b+cxb+b=x^3-3x+2\)
\(\Leftrightarrow ax^3+x^2\left(ac+b\right)+x\left(a+bc\right)+b=x^3-3x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\ac+b=0\\a+bc=3\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c+2=0\\1+2\cdot\left(-2\right)=3\end{matrix}\right.\Leftrightarrow\left(a,b,c\right)\in\varnothing\)
a) \(x^2-6x+3\)
\(=x^2-2.x.3+9-6\)
\(=\left(x-3\right)^2-\left(\sqrt{6}\right)^2\)
\(=\left(x-3-\sqrt{6}\right)\left(x-3+\sqrt{6}\right)\)
b) \(9x^2+6x-8\)
\(=\left(3x\right)^2+2.3x+1-9\)
\(=\left(3x+1\right)^2-3^2\)
\(=\left(3x+1-3\right)\left(3x+1+3\right)\)
\(=\left(3x-2\right)\left(3x+4\right)\)
d) \(x^3+6x^2+11x+6\)
\(=x^3+3x^2+3x^2+9x+2x+6\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x+3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
e) \(x^3+4x^2-29x+24\)
\(=x^3+8x^2-4x^2-32x+3x+24\)
\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)
\(=\left(x+8\right)\left(x^2-4x+3\right)\)
\(=\left(x+8\right)\left(x^2-3x-x+3\right)\)
\(=\left(x+8\right)\left[x\left(x-3\right)-\left(x-3\right)\right]\)
\(=\left(x+8\right)\left(x-3\right)\left(x-1\right)\)
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
b: \(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=3 hoặc x=-4
c: \(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2+5x-3x-5=0\)
=>(3x+5)(x-1)=0
=>x=1 hoặc x=-5/3
d: \(x^4-2x^2-3=0\)
\(\Leftrightarrow x^4-3x^2+x^2-3=0\)
\(\Leftrightarrow x^2-3=0\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
ý a pạn đưa về dạng ax+b=0 khi chuyển 16 sang và rút gọn 2 biểu thức còn lại đưa về dạng (a+b)2+(a-b)2-16=0. thế thôi. hai biểu thức (x+3)4+(x-2) 4 tự phân tích nhé
a, Theo bài ra ta có:
\(=x^3-x-2x+2\)
\(=x\left(x^2-1\right)-2\left(x-1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-2\right)\)
b, theo bài ra ta có:
\(=x^3-3x^2-\left(2x^2-6x\right)-\left(3x-9\right)\)
\(=x^2\left(x-3\right)-2x\left(x-3\right)-3\left(x-3\right)\)
\(=\left(x^2-2x-3\right)\left(x-3\right)\)
c,Theo bài ra ta có:
\(=x^3+5x^2+3x^2+15x+2x+10\)
\(=x^2\left(x+5\right)+3x\left(x+5\right)+2\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2+3x+2\right)\)
\(=\left(x+5\right)\left(x^2+x+2x+2\right)=\left(x+5\right)\left(x\left(x+1\right)+2\left(x+1\right)\right)\)
\(=\left(x+5\right)\left(x+1\right)\left(x+2\right)\)
CHÚC BẠN HỌC TỐT...........
a) \(x^3-3x+2\)
= \(x^3-x^2+x^2-x-2x+2\)
= \(x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2+x-2\right)\)
= \(\left(x-1\right)\left(x^2+2x-x-2\right)\)
= \(\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
= \(\left(x-1\right)\left(x+2\right)\left(x-1\right)\)
= \(\left(x-1\right)^2\left(x+2\right)\)
b) \(x^3-5x^2+3x+9\)
= \(x^3+x^2-6x^2-6x+9x+9\)
= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2-6x+9\right)\)
= \(\left(x+1\right)\left(x-3\right)^2\)
c) \(x^3+8x^2+17x+10\)
= \(x^3+x^2+7x^2+7x+10x+10\)
= \(x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+7x+10\right)\)
= \(\left(x+1\right)\left(x^2+2x+5x+10\right)\)
= \(\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)
= \(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
d) \(x^3-3x^2+6x+4\)
Câu này đúng là sai đề rồi, mình sửa + làm bên dưới:
\(x^3+3x^2+6x+4\)
= \(x^3+x^2+2x^2+2x+4x+4\)
= \(x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+2x+4\right)\)
Học tốt nhé :))