Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
Bài 2 :
Áp dụng theo dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\left[{}\begin{matrix}\dfrac{x}{7}=2\Rightarrow x=14\\\dfrac{y}{13}=2\Rightarrow y=36\end{matrix}\right.\)
Vậy .................
Bài 3 :
Bạn cũng áp dụng dãy tỉ số bằng nhau là ra nhé :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\)2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
3)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\rightarrowđpcm\)
Bài 1:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)
\(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)
\(\Rightarrowđpcm\)
d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)
\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
e, Sai đề
f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)
\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
Câu 1: tự lm, dễ tek k lm đc thì mất gốc lun đó
Câu 2: link: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Câu 3: Câu hỏi của phuc le - Toán lớp 7 | Học trực tuyến
Câu 4: Goij 3 đơn vị đó lần lượt là a, b, c (a, b, c \(\in N\)*)
Theo đề ta có: \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\) và \(a+b+c=560\)
Áp dung t/c của dãy tỉ số = nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{2+5+7}=\dfrac{560}{14}=40\)
\(\Rightarrow\left[{}\begin{matrix}a=40\cdot2=80\\b=40\cdot5=200\\c=40\cdot7=280\end{matrix}\right.\)
Vậy 3 đơn vị được chia lại lần lượt là: 80 triệu ; 200 triệu ; 280 triệu
Câu 5: + 6: cứ thay x, y vào mà lm, phần đồ thị hs dễ bn ạ!
\(xy-3x-y=6\)
\(=>xy+3x-y-3=6-3\)
\(=>x\left(y+3\right)-\left(y+3\right)=3\)
\(=>\left(y+3\right)\left(x-1\right)=3\)
y+3 | -1 | 3 | 1 | -3 | |
x-1 | -3 | 1 | 3 | -1 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | -1 | -7 | -3 |
x-1 | -3 | 1 | 3 | -1 |
x | -2 | 2 | 4 | 0 |
a) \(\dfrac{x}{3}=\dfrac{y}{5}\) và x + y = 16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
\(\dfrac{x}{3}\Rightarrow x=3.2=6\)
\(\dfrac{y}{5}\Rightarrow y=5.2=10\)
=> x = 6
y = 10
6) Tìm giá trị lớn nhất : A = 0,5 - | x - 3,5 |
Vì | x - 3,5 | \(\ge\) 0
nên A= 0,5 - | x - 3,5 | \(\le\) 0,5
GTLN của A là 0,5 khi và chỉ khi x-3,5= 0
=> x= 3,5
5) Tìm x thuộc Q :(x +1)(x-2) < 0
Để (x +1)(x-2) \(\in Q\)
Thì x+1 và x-2 khác dấu
mà ta thấy x+1 > x-2 ( luôn luôn xảy ra)
=> x+1\(\ge\)0 => x= -1
x-2\(\le\) 0 => x= 2
Vậy -1 <x <2
vậy: x \(\in\) 0;1
bài 4:
gọi x. y, z, k lần lượt là số học sinh khối 6, 7, 8,9
theo đề ta có:
\(\dfrac{x}{11}=\dfrac{y}{10}=\dfrac{z}{9}=\dfrac{k}{8}\) và y-k= 22
=> \(\dfrac{x}{11}=\dfrac{y}{10}=\dfrac{z}{9}=\dfrac{k}{8}\)= \(\dfrac{y-k}{10-8}=\dfrac{22}{2}=11\)
=> x= 121
y= 110
z= 99
k= 88
Vậy khối 6, 7, 8, 9 có..............................
Cái này chỉ cần làm quy tắc nhân chéo là ra rồi nhé :)
a) \(x=\dfrac{-2,6.42}{-12}\)=9,1
b) x = \(\dfrac{2,5.12}{1.5}\) = 20
c) Nhân chéo: 7.(x-1) = 6.(x+5)
<=> 7x - 7 = 6x +30
<=> 7x - 6x = 7 + 30 (chuyển vế)
-> x = 37
d) Nhân chéo: 25x2 = 24.6 = 144
x2 = \(\dfrac{144}{25}\)=5,76
-> x = \(\sqrt{5,76}\) = 2,4
e) Nhân chéo: (x-2)2 = 4.9 = 36
Ta dễ thấy (x-2)2 = 62
-> x-2 = 6 -> x = 6+2 = 8
TICK NHÉ :)
1B
3C
4B
5D
6B
7B