K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

Để x+3/x-5 thuộc N

=>x+3 chia hết x-5

=>x-5+8 chia hết x-5

=>8 chia hết x-5

=>x-5 thuộc Ư(8)={...}

Tới đây bạn tự xét

25 tháng 6 2016

bạn à cách này sai ùi thầy mình giải khác

6 tháng 9 2016

Bài 1.  Ta luôn có : \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow3,5-\left|x+5\right|\le3,5\Rightarrow\frac{1}{3,5-\left|x+5\right|}\ge\frac{1}{3,5}\)

Hay \(E\ge\frac{2}{7}\) . Dấu "=" xảy ra khi và chỉ khi \(\left|x+5\right|=0\Rightarrow x=-5\)

Vậy Min E = 2/7 <=> x = -5

Bài 2. Ta có : \(\left|x\right|+\left|y\right|=1\Leftrightarrow\left|\frac{1}{b}\right|+\left|\frac{c}{3}\right|=1\)

Xét các trường hợp : 

1. Nếu \(b< 0,c\le0\) thì \(-\frac{1}{b}-\frac{c}{3}=1\Leftrightarrow bc+3=-3b\Leftrightarrow b\left(c+3\right)=-3\)

Vì b,c là các số nguyên nên b = -1 hoặc b = -3

+) Với b = -1 thì c+3 = 3 => c = 0 (t/m)

+) Với b = -3 thì c + 3 = 1 => c = -2 (t/m)

Vậy (b;c) = (-1;0) ; (-3;-2)

2. Nếu \(b>0,c\ge0\) thì \(\frac{1}{b}+\frac{c}{3}=1\Rightarrow bc+3=3b\Rightarrow b\left(c-3\right)=-3\)

Vì b,c là các số nguyên  nên b = 1 hoặc b = 3

+) Với b = 1 thì c-3 = -3 => c = 0 (t/m)

+) Với b = 3 thì c-3 = -1 => c = 2 (t/m)

Vậy (b;c) = (3;2) ; (1;0)

3. Nếu \(b>0,c\le0\) thì \(\frac{1}{b}-\frac{c}{3}=1\Rightarrow b\left(c+3\right)=3\)

Tương tự xét như trên được (b;c) = (1;0) ; (3;-2)

4. Nếu b < 0 , \(c\ge0\) thì \(\frac{c}{3}-\frac{1}{b}=1\Rightarrow b\left(c-3\right)=3\)

=> (b;c) = (-1;0) ; (-3;2)

Vậy (b;c) = (-1;0) ; (-3;-2) ; (3;2) ; (1;0) ; (3;-2) ; (-3;2)

1 tháng 2 2018

\(\text{Ta có: }A=x^{2005}-2006x^{2004}+2006x^{2003}-2006x^{2002}+...-2006x^2+2006x-1.\)\(=x^{2005}-\left(2005+1\right)x^{2004}+\left(2005+1\right)x^{2003}-\left(2005+1\right)x^{2002}+...-\left(2005+1\right)x^2+\left(2005+1\right)x-1\)  \(\text{Mà x=2005 nên: }A=x^{2005}-x^{2005}-x^{2004}+x^{2004}+x^{2003}-x^{2003}-x^{2002}+...-x^3-x^2+x^2+x-1\)

  \(=x-1=2005-1=2004\)

21 tháng 7 2017

nhận giá trị âm tức là giá trị của biểu thức nhỏ hơn 0 và ngược lại!

a) \(15-3x< 0\)

\(\Leftrightarrow-3x< -15\)

\(\Leftrightarrow3x>5\)

b) \(27x+9< 0\)

\(\Leftrightarrow27x< -9\)

\(\Leftrightarrow x< -\frac{1}{3}\)

c) \(2y^2-4x< 0\)

\(\Leftrightarrow2\cdot\left(y^2-2x\right)< 0\)

\(\Leftrightarrow y^2-2x< 0\)

......

10 tháng 11 2016

Biến đổi \(D=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\).

D lớn nhất khi và chỉ khi \(\frac{10}{4-x}\) lớn nhất.

Xét \(x>4\) thì \(\frac{10}{4-x}< 0.\left(1\right)\)

Xét \(x< 4\) thì \(\frac{10}{4-x}>0\). Phân số \(\frac{10}{4-x}\) có tử và mẫu đều dương, tử không đổi nên có giá trị lớn nhất khi mẫu nhỏ nhất. Mẫu \(4-x\) là số nguyên dương, nhỏ nhất khi \(4-x=1\) tức là \(x=3\). Khi đó

\(\frac{10}{4-x}=10\left(2\right)\)

So sánh \(\left(1\right)\)\(\left(2\right)\), ta thấy \(\frac{10}{4-x}\) lớn nhất bằng 10. Vậy GTLN của D bằng 11 khi và chỉ khi \(x=3\)

10 tháng 11 2016

ĐK: \(x\ne4\)

Để D lớn nhất thì 2D lớn nhất

Ta có: \(2D=\frac{2.\left(14-x\right)}{4-x}=\frac{28-2x}{4-x}=\frac{20}{4-x}+\frac{2.\left(4-x\right)}{4-x}=\frac{20}{4-x}+2\)

2D lớn nhất nên \(\frac{20}{4-x}\) lớn nhất hay 4 - x nhỏ nhất

+ Nếu x > 4 thì 4 - x < 0 => \(\frac{20}{4-x}\) < 0 (1)

+ Nếu x < 4 do 4 - x nhỏ nhất; x nguyên nên x = 3 => \(\frac{20}{4-x}=\frac{20}{4-3}=20\) (2)

So sánh (1) với (2) ta thấy (2) lớn hơn

Khi x = 3 thì \(D=\frac{14-3}{4-3}=\frac{11}{1}=11\)

Vậy GTNN của D là 11 khi x = 3

15 tháng 11 2015

|x + 5| > 0

- |x + 5| < 0

3,5 - |x + 5| < 3,5

\(A=\frac{1}{3,5-\left|x+5\right|}\ge\frac{1}{3,5}=\frac{2}{7}\)

\(\Rightarrow A_{min}=\frac{2}{7}\Leftrightarrow x=-5\)

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

23 tháng 8 2021

Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)

\(=>-\frac{2}{5}|x-1|+1\le1\)

Dấu "=" xảy ra \(< =>x=1\)

Vậy Max A = 1 khi x = 1