K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2015

3,  

3 số đó là 1/2  1/4  1/8

3 tháng 5 2016

sao ma kho 

27 tháng 1 2022

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

13 tháng 5 2018

1, Tìm các số x biết:\

a, -x-3/4=18/7

-x=18/7+3/4

-x=93/28

x=-93/28

Vậy...

14 tháng 3 2021

Gọi ƯCLN(n + 1 ; n + 2) = d\(\left(d\inℕ\right)\)

=> \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> n + 1 ; n + 2 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{n+2}\) là phân số tối giản

b) Gọi ƯCLN(2n + 3 ; 3n + 5) = d (d \(\inℕ\))

=> \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> 2n + 3 ; 3n + 5 là 2 số nguyên tố cùng nhau

=> \(\frac{2n+3}{3n+5}\) là phân số tối giản

14 tháng 3 2021

a) Gọi ƯC( n + 1 ; n + 2 ) = d

=> n + 2 ⋮ d và n + 1⋮ d

=> n + 2 - ( n - 1 ) ⋮ d

=> 1 ⋮ d => d = 1

=> ƯCLN( n + 1 ; n + 2 ) = 1

hay n+1/n+2 tối giản ( đpcm )

b) Gọi ƯC( 2n + 3 ; 3n + 5 ) = d

=> 2n + 3 ⋮ d và 3n + 5 ⋮ d

=> 6n + 9 ⋮ d và 6n + 10 ⋮ d

=> 6n + 10 - ( 6n + 9 ) ⋮ d

=> 1 ⋮ d => d = 1

=> ƯCLN( 2n + 3 ; 3n + 5 ) = 1

hay 2n+3/3n+5 tối giản ( đpcm )

2 tháng 4 2016

day la phan so co the rut gon duoc

31 tháng 3 2020

Để chứng minh một phân số là tối giản, ta cần chứng minh ƯCLN (tử, mẫu) = 1

Bài giải

a) Ta có phân số: \(\frac{n+1}{3n+4}\)(n \(\inℕ\))

Gọi ƯCLN (n + 1; 3n + 4) là d    (d \(\inℕ^∗\))

=> n + 1 \(⋮\)d;   3n + 4 \(⋮\)d

=> 3n + 4 - 3(n + 1) \(⋮\)d

=> 1 \(⋮\)d

=> ƯCLN (n + 1; 3n + 4) = 1

=> \(\frac{n+1}{3n+4}\)là phân số tối giản

=> ĐPCM

b) Ta có phân số: \(\frac{2n+3}{3n+5}\)(n \(\inℕ\))

Gọi ƯCLN (2n + 3; 3n + 5) là d  (d \(\inℕ^∗\))

=> 2n + 3 \(⋮\)d;      3n + 5 \(⋮\)d

=> 2(3n + 5) - 3(2n + 3) \(⋮\)d

=> 1 \(⋮\)d

=> ƯCLN (2n + 3; 3n + 5) = 1

=> \(\frac{2n+3}{3n+5}\)là phân số tối giản

=> ĐPCM

31 tháng 3 2020

a) Gọi (n+1,3n+4) là d ( d thuộc N* )

=> n+1 và 3n+4 đều chia hết cho d

=> (3n+4)-3(n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> (n+1,3n+4)=1 nên n+1 và 3n+4 là 2 SNT cùng nhau

=> P/s n+1/3n+4 tối giản với mọi n thuộc N  (đpcm)

b) Gọi (2n+3,3n+5) là d  (d thuộc N*)

=> 2n+3 chia hết cho d và 3n+5 chia hết cho d

=> (3n+5)-(2n+3) chia hết cho d

=> 2(3n+5)-3(2n+3) chia hết cho d

=> 6n+10-6n+9 chia hết cho d

=> d=1

=> (2n+3,3n+5)=1 nên 2n+3 và 3n+5 là 2 SNT cùng nhau

=> P/s 2n+3/3n+5 tối giản với mọi n thuộc N  (đpcm)

16 tháng 8 2015

Chứng minh rằng mọi phân số có dạng: 

a)n+1/2n+3 (n là số tự nhiên)

b)2n+3/3n+5  ( n là số tự nhiên) đều là phân số tối giản

6 tháng 3 2018

giúp mình nha !