K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

Bài 1:

a) \(x^2+10x+26+y^2+2y=(x^2+10x+25)+(y^2+2y+1)\)

..................................................= \(\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(z^2-6z+5-t^2-4t=(z^2-6t+9)-(t^2+4t+4)\)

............................................= \(\left(z-3\right)^2-\left(t+2\right)^2\)

c) \(x^2-2xy+2y^2+2y+1=(x^2-2xy+y^2)+(y^2+2y+1)\)

..................................................= \(\left(x-y\right)^2+\left(y+1\right)^2\)

d) \(4x^2-12x-y^2+2y+8=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)

.................................................= \(\left(2x-3\right)^2-\left(y-1\right)^2\)

10 tháng 6 2018

Bài 2:

a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)

b) \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)

c) \(\left(y+2z-3\right)\left(y-2z+3\right)=y^2-\left(2z-3\right)^2\)

d) \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)

25 tháng 7 2020

1) x2 + 10x + 26 + y2 + 2y 

= (x2 + 10x + 25) + (y2 + 2y + 1)

= (x2 + 5x + 5x + 25) + (y2 + y + y + 1)

= x(x + 5) + 5(x + 5) + y(y +  1) + (y + 1)

= (x + 5)2 + (y + 1)2

2) z2 - 6z + 13 + t2 + 4t 

= (z2 - 6z + 9) + (t2 + 4t + 4) 

= (z2 - 3z - 3z + 9) + (t2 + 2t + 2t + 4)

= z(z - 3) - 3(z - 3) + t(t + 2) + 2(t + 2)

= (z - 3)2 + (t + 2)2

3) x2 - 2xy + 2y2 + 2y + 1

(x2 - 2xy + y2) + (y2 + 2y + 1)

= (x - xy - xy + y2) + (y2 + y + y +1)

= x(x - y) - y(x - y) + y(y + 1) + (y + 1)

= (x - y)2 + (y + 1)2

11 tháng 10 2020

a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )

b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )

c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )

d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )

e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )

f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )

1/ P(x)= x^4 + x^3 +x + 1

          = x^3(x+1)+(x+1) *1

          = (x+1)(x^3+1)

     Nghiệm P(x)khi P(x)=0

hay (x+1)(x^3+1)=0

suy ra x+1=0 do đó x=-1

và x^3+1=0 suy ra x^3=-1 nên x=-1

Vậy P(x) có 1 nghiệm là x=-1

26 tháng 7 2017

Bài 1: Viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu

a) \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2=\left(2x-3y\right)^2\)

b) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2=\left(5x-2y\right)^2\)

c) \(9x^2+y^2-6xy=\left(3x\right)^2-2.3xy+y^2=\left(3x-y\right)^2\)

d) \(x^2+6xy+9y^2=x^2+2x.3y+\left(3y\right)^2=\left(x+3y\right)^2\)

e) \(x^2-10xy+25y^2=x^2-2x.5y+\left(5y\right)^2=\left(x-5y\right)^2\)

g) \(\left(3x+2y\right)^2+2\left(3x+2y\right)+1=\left(3x+2y+1\right)^2\)

Câu cuối mình sửa lại đề nhé bạn! Nếu để như trên đề thì không thể viết đáp án dưới dạng bình phương của 1 tổng hoặc 1 hiệu được.

26 tháng 7 2017

\(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)

\(25x^2-20xy+4y^2=\left(5x-2y\right)^2\)

\(9x^2+y^2-6xy=\left(3x-y\right)\)

\(x^2+6xy+9y^2=\left(x+3y\right)^2\)

\(x^2-10xy+25y^2=\left(x-5y\right)^2\)

\(\left(3x+2y\right)+2\left(3x+2y\right)+1=3\left(3x+2y\right)+1=9x+6y+1\)

26 tháng 11 2014

1) ADTCDTSBN, ta có:

 \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4

\(\frac{x}{3}=4\)=> x = 3 . 4 = 12

\(\frac{y}{4}=4\)=> y = 4 . 4 = 16

\(\frac{z}{5}=4\)=> z = 5 . 4 = 20

Vậy x = 12

       y = 16

       z = 20

 

1 tháng 2 2015

x=12

y=16

z=20

23 tháng 6 2017

Bài 1:

Giải:

Ta có: \(\left\{{}\begin{matrix}3x=4y\\5y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)

Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)

\(xyz=30\)

\(\Rightarrow240k^3=30\)

\(\Rightarrow k^3=\dfrac{1}{8}\)

\(\Rightarrow k=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=2,5\end{matrix}\right.\)

Vậy...

Bài 2: sai đề

Bài 3:

Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)

Ta có: \(x+2y+3z=38\)

\(\Rightarrow2k+1+8k-6+18k+15=38\)

\(\Rightarrow28k=28\)

\(\Rightarrow k=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\\z=11\end{matrix}\right.\)

Vậy...

23 tháng 6 2017

1) Ta có :

\(3x=4y\Rightarrow\dfrac{3x}{12}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\) <=> \(\dfrac{x}{8}=\dfrac{y}{6}\)

\(5y=6z\Rightarrow\dfrac{5y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\)

=> \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)

Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)

Thay vào đẳng thức xyz = 30

=> 8k.6k.5k = 30

<=> 240k3 = 30

<=> k3 = 8

<=> k = 2

\(\Rightarrow\left\{{}\begin{matrix}x=8.2=16\\y=6.2=12\\z=5.2=10\end{matrix}\right.\)

b) Câu này cũng tương tự câu 1 nha ! Đặt k luôn , còn không bình phương lên rồi dùng tính chất dãy tỉ số bằng nhau .

c) Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\)

=> \(\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)

Thay vào đẳng thức , ta có :

x + 2y + 3z = 2k + 1 + 2(4k - 3) + 3(6k + 5) = 38

=> 28k = 38

=> k = \(\dfrac{19}{14}\)

Vậy .....

4 tháng 6 2017

\(P=\dfrac{1}{3}xy\left(x^2+y^2\right)-4x^2\left(xy^2-y\right)+2\left(x^2y-xy^2\right)\)

\(=\dfrac{1}{3}x^3y+\dfrac{1}{3}xy^3-4x^3y^2+4x^2y+2x^2y-2xy^2\)