Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1. Ta có ^B+^C=1800-1000=800. => ^C=[(^B+^C)-(^B-^C)]/2 =(800-500)/2=150 => ^B=150+500=650.
2. ^A+^C=1800-^B=1800-800=1000
3^A=2^C => ^A/2=^C/3 = (^A+^C)/2+3 (Dãy tỉ số bằng nhau)
=(^A+^C)/5=1000/5=200 => ^A=200.2=400; ^C=200.3=600.
Bài 2:
Gọi góc ngoài đỉnh C của tam giác ABC là ^ACy => ^Cx là phân giác ^ACy
=> ^ACx=^xCy=^ACy/2=1200/2=600
^A=600 => ^ACy=^A=600. Mà 2 góc này so le trong => Cx//AB.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-60^0=120^0\\ \Rightarrow2\widehat{C}+\widehat{C}=3\widehat{C}=120^0\\ \Rightarrow\widehat{C}=40^0\Rightarrow\widehat{B}=80^0\)
A C B D E
a) Xét tam giác vuông ABC, ta có: \(\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
b) Ta thấy góc \(\widehat{BAD}\) và \(\widehat{BAC}\) là hai góc kề bù, mà \(\widehat{BAC}=90^o\Rightarrow\widehat{BAD}=90^o\)
Xét hai tam giác vuông ABD và ABC có:
BA chung
DA = CA (gt)
\(\Rightarrow\Delta ABD=\Delta ABC\) (Hai cạnh góc vuông)
c) Do BE là tia phân giác góc ABC nên \(\widehat{ABE}=\widehat{CBE}=30^o\)
Do \(\Delta ABD=\Delta ABC\Rightarrow\hept{\begin{cases}DB=CB\\\widehat{DBA}=\widehat{CBA}=60^o\end{cases}}\)
\(\Rightarrow\widehat{DBE}=\widehat{DBA}+\widehat{ABE}=60^o+30^o=90^o\)
Do BA và CE cùng vuông góc với AC nên BC // CE. Vậy thì \(\widehat{BEC}=\widehat{ABE}=30^o\)
Xét tam giác BCE có: \(\widehat{BEC}=\widehat{CBE}=30^o\) nên nó là tam giác cân. Hay BC = CE
Từ đó ta có : DB = EC
Xét tam giác vuông DBE và ECD có:
DB = EC
DE chung
\(\Rightarrow\Delta DBE=\Delta ECD\) (Cạnh huyền cạnh góc vuông)
\(\Rightarrow BE=CD\)
Mà CD = CA + AD = 2AC
Vậy nên BE = 2AC.
2, Theo bài ra ta có : ^A = 600 ; ^B = 2.^C (*)
^A + ^B + ^C = 1800 ( tổng 3 góc trong tam giác ) (**)
Lấy (*) thay vào (**) ta được : ^A + 2.^C + ^C = 1800
<=> 600 + 3.^C = 1800 <=> 3.^C = 1200
<=> ^C = 400 ; => ^B = 2.400 = 800