K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2021

\(\overrightarrow{AB}=\left(-1;1\right)\) nên pt AB có dạng:

\(1\left(x-2\right)+1\left(y-3\right)=0\Leftrightarrow x+y-5=0\)

Do I thuộc AB nên tọa độ có dạng: \(I\left(a;5-a\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(2-a;a-2\right)\\\overrightarrow{IB}=\left(1-a;a-1\right)\\\overrightarrow{IC}=\left(-1-a;a-10\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{IA}+3\overrightarrow{IB}+5\overrightarrow{IC}=\left(-9a;9a-55\right)\)

\(\Rightarrow\left|\overrightarrow{IA}+3\overrightarrow{IB}+5\overrightarrow{IC}\right|=\sqrt{\left(9a\right)^2+\left(55-9a\right)^2}\ge\sqrt{\dfrac{1}{2}\left(9a+55-9a\right)^2}=\dfrac{55}{\sqrt{2}}\)

Dấu "=" xảy ra khi \(9a=55-9a\Rightarrow a=\dfrac{55}{18}\Rightarrow I\left(\dfrac{55}{18};\dfrac{35}{18}\right)\)

Kiểm tra lại tính toán

30 tháng 12 2020

tại sao

Q=\(2\sqrt{\left(9-3m\right)^2}...\)

chuyển xuống thành \(\sqrt{\left(18-6m\right)^2...}\)

sao không phải là nhân 4 ở trong mài

vì \(2=\sqrt{4}\), vậy thì phải nhân 4 chứ 

NV
24 tháng 12 2020

Do M thuộc Ox, gọi tọa độ M có dạng \(M\left(m;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-m;-4\right)\\\overrightarrow{MB}=\left(4-m;5\right)\\\overrightarrow{MC}=\left(-m;-9\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+2\overrightarrow{MB}=\left(9-3m;6\right)\\\overrightarrow{MB}+\overrightarrow{MC}=\left(4-2m;-4\right)\end{matrix}\right.\)

\(Q=2\sqrt{\left(9-3m\right)^2+6^2}+3\sqrt{\left(4-2m\right)^2+\left(-4\right)^2}\)

\(=\sqrt{\left(6m-18\right)^2+12^2}+\sqrt{\left(12-6m\right)^2+12^2}\)

\(=\sqrt{\left(18-6m\right)^2+12^2}+\sqrt{\left(6m-12\right)^2+12^2}\)

\(Q\ge\sqrt{\left(18-6m+6m-12\right)^2+\left(12+12\right)^2}=6\sqrt{17}\)

\(\Rightarrow a-b=-11\)

NV
23 tháng 12 2022

a.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)

\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G

Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)

b.

Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min  khi MG đạt min

\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox

Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)

c.

Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)

Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)

\(\Rightarrow M\left(-2;0\right)\)

23 tháng 12 2022

<3 em cảm ơn "giáo viên"!

26 tháng 1 2021

Gọi G là trọng tâm tam giác ABC

\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất

\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung

\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)

Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)

10 tháng 12 2018

a) Gọi \(D\left(x;y\right)\)

\(2\overrightarrow{DA}=\left(20-2x;10-2y\right)\\ 3\overrightarrow{DB}=\left(9-3x;6-3y\right)\\ -\overrightarrow{DC}=\overrightarrow{CD}=\left(x-6;y+5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}20-2x+9-3x+x-6=0\\10-2y+6-3y+y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{23}{4}\\y=\dfrac{21}{4}\end{matrix}\right.\)

10 tháng 12 2018

b)\(\overrightarrow{AF}=\left(-15;3\right)\\\overrightarrow{AB}=\left(-7;-3\right) \\ \overrightarrow{AC}=\left(-4;-10\right)\\\overrightarrow{AF}=a\overrightarrow{AB}+bAC\Rightarrow\left\{{}\begin{matrix}-7a-4b=-15\\-3a-10b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{81}{29}\\b=-\dfrac{33}{29}\end{matrix}\right.\)

1, Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C (-1 ; 2) . Điểm M thỏa mãn \(2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tọa độ điểm M là ? 2. Cho \(\overrightarrow{a}=\left(1;2\right)\) và \(\overrightarrow{b}=\left(3;4\right)\) Vecto \(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}\) có tọa độ là ? 3. Cho A(3;-2) , B (-5;4 ) và C \(\left(\frac{1}{3};0\right)\). Ta có \(\overrightarrow{AB}=x\overrightarrow{AC}\) tìm giá trị...
Đọc tiếp

1, Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C (-1 ; 2) . Điểm M thỏa mãn \(2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tọa độ điểm M là ?
2. Cho \(\overrightarrow{a}=\left(1;2\right)\)\(\overrightarrow{b}=\left(3;4\right)\) Vecto \(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}\) có tọa độ là ?

3. Cho A(3;-2) , B (-5;4 ) và C \(\left(\frac{1}{3};0\right)\). Ta có \(\overrightarrow{AB}=x\overrightarrow{AC}\) tìm giá trị của x

4, Trên trục x'Ox cho 2 điểm A,B lân lượt có tọa dộ là a, b. M là điểm thỏa mãn \(\overrightarrow{MA}=k\overrightarrow{MB},k\ne1\). Khi đó tọa độ điểm M là

5, Trong mặt phẳng Oxy , cho \(\overrightarrow{a}=\left(2,1\right);\overrightarrow{b}=\left(3,4\right);\overrightarrow{c}=\left(7,2\right)\)Tìm m,n để A,B,C thẳng hàng
*Minh mới học phần này cũng chưa hiểu lắm nên các bạn giải kĩ giúp mình. Cảm ơn nhiều <3

2
18 tháng 8 2019

Hok nhanh phết, chưa j đã đến phần toạ độ vecto r

1/ \(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(2-x_M;3-y_M\right)\)

\(\Rightarrow2\overrightarrow{MB}=\left(4-2x_M;6-2y_M\right)\)

\(\overrightarrow{3MC}=\left(3x_C-3x_M;3y_C-3y_M\right)=\left(-3-3x_M;6-3y_M\right)\)

\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(4-2x_M-3-3x_M;6-2y_M+6-3y_M\right)=0\)

\(\Leftrightarrow\left(1-5x_M;12-5y_M\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-5x_M=0\\12-5y_M=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=\frac{1}{5}\\y_M=\frac{12}{5}\end{matrix}\right.\Rightarrow M\left(\frac{1}{5};\frac{12}{5}\right)\)

18 tháng 8 2019

2/ \(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2+9;4+12\right)=\left(11;16\right)\)

3/ \(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5-3;4+2\right)=\left(-8;6\right)\)

\(\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(\frac{1}{3}-3;0+2\right)=\left(-\frac{8}{3};2\right)\)

\(\Rightarrow x=\frac{\overrightarrow{AB}}{\overrightarrow{AC}}=\frac{\left(-8;6\right)}{\left(-\frac{8}{3};2\right)}=3\)

Câu 4 tương tự

Câu 5 vt lại đề bài nhé bn, nghe nó vô lý sao á, m,n ở đâu ra vậy, cả A,B,C nx

NV
24 tháng 12 2020

\(\Leftrightarrow\left\{{}\begin{matrix}5=2x+1.y\\12=3.x-4.y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{32}{11}\\y=-\dfrac{9}{11}\end{matrix}\right.\)