Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tính nhân
(4x3+3xy2-2y3).(3x2-5xy-6y2)
=12x5+12y5-20x4y-36x2y3-8xy4
Phân tích đa thức thành nhân tử
10x3+5x2y-10x2y-10xy2+5y3
=10x3-5x2y-10xy2+5y3
=5(2x3-x2y-2xy2+y3-)
a,\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)=3x^3y^3-x^2y^2+\frac{3}{5}x^3y^2\)
b,\(5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)
c, \(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
1) 1/5x2y( 15xy2 - 5y + 3xy ) = 3x3y3 - x2y2 + 3/5x3y2
2) a) 5x3 - 5x = 5x( x2 - 1 ) = 5x( x2 - 12 ) = 5x( x - 1 )( x + 1 )
b) 3x2 + 5y - 3xy - 5x = ( 3x2 - 3xy ) + ( 5y - 5x )
= 3x( x - y ) + 5( y - x )
= 3x( x - y ) + 5[ -( x - y ) ]
= 3x( x - y ) - 5( x - y )
= ( 3x - 5 )( x - y )
1) \(\left(5x-4\right)\left(4x-5\right)+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)
\(=20x^2-41x+20+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)
\(=20x^2-41+20+5x^2+19x-4+3\left(3x-2\right)\)
\(=20x^2-41x+20+5x^2+19x-4+9x-4\)
\(=25x^2-13x+10\)
2) \(\left(5x-4\right)^2+\left(16-25x^2\right)+\left(5x+4\right)\left(3x+2\right)\)
\(=\left(5x-4\right)^2+16-25x^2+\left(5x-4\right)\left(3x+2\right)\)
\(=25x^2-40x+16^2-25x^2+\left(5x-4\right)\left(3x+2\right)\)
\(=25x^2-40x+16^2-25x^2+15x^2-2x-8\)
\(=15x^2-42x+24\)
1a) (x - 2y) (x2 - 2xy + y2)
= (x - 2y) (x - y)2
= x2 - xy - 2xy + 2y2
= (x2 - xy) - (2xy - 2y2)
= x (x - y) - 2y (x - y)
= (x - y) (x - 2y)
2a) x (x - 3) - y (3 - x)
= x (x - 3) + y (x - 3)
= (x - 3) (x + y)
b) 3x2 - 5x - 3xy + 5y
= (3x2 - 3xy) - (5x - 5y)
= 3x (x - y) - 5 (x - y)
= (x - y) (3x - 5)
3) 12x (3 - 4x) + 7 (4x - 3) = 0
12x (3 - 4x) - 7 (3 - 4x) = 0
(3 - 4x) (12x - 7) = 0
=> 3 - 4x = 0 hoặc 12x - 7 = 0
* 3 - 4x = 0 => x = \(\frac{3}{4}\)
* 12x - 7 = 0 => x = \(\frac{7}{12}\)
Vậy x =\(\frac{3}{4}\)hoặc x =\(\frac{7}{12}\)
Bài giải:
a) x2 – xy + x – y = (x2 – xy) + (x - y)
= x(x - y) + (x -y)
= (x - y)(x + 1)
b) xz + yz – 5(x + y) = z(x + y) - 5(x + y)
= (x + y)(z - 5)
c) 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) - (5x - 5y)
= 3x(x - y) -5(x - y) = (x - y)(3x - 5).
\(a) x^2 - xy+x-y\) \(= (x^2 - xy) + ( x- y) \)
\(=x(x-y) + (x-y)\)
\(= (x-y) (x+1)\)
\(b) xz + yz - 5(x+y)\) \(= (xz + yz) - 5(x+y)\)
\(= z(x+y) - 5(x+y)\)
\(= (x+y) (z-5)\)
\(c) 3x^2 - 3xy - 5x +5y = (3x^2-3xy) - (5x-5y)\)
\(= 3x(x-y) - 5(x-y)\)
\(= (x-y)(3x-5)\)
a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)
(tự rút gọn cái :P)
b, \(8x^3+4x^2y-2xy^2-y^3\)
\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)
\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)
\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)
Mấy cái còn lại nhân tung ra là được mà :))))
Đây, bản full đây thím, tớ thực sự đã kiên nhẫn lắm đấy ...
a)\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)
\(=4\left[\left(x^2-2x+1\right)-\left(a^2-2ay+y^2\right)\right]\)
\(=4\left[\left(x-1\right)^2-\left(a-y\right)^2\right]\)
\(=4\left(x-1-a+y\right)\left(x-1+a-y\right)\)
b)\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
c)\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(5x+5\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
d)\(a^5+a^4+a^3+a^2+a+1=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a+1\right)\left(a^4+2a^2+1-a^2\right)\)
\(=\left(a+1\right)\left[\left(a^2+1\right)^2-a^2\right]\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)
e)\(x^3-3x^2+3x-1-y^3=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)
\(=\left(x-1-y\right)\left(x^2-2x+1+xy-y+y^2\right)\)
f)\(5x^3-3x^2y-45xy^2+27y^3=5x\left(x^2-9y^2\right)-3y\left(x^2-9y^2\right)\)
\(=\left(x^2-9y^2\right)\left(5x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)\left(5x-3y\right)\)
g)\(3x^2\left(a-b+c\right)+36xy\left(a-b+c\right)+108y^2\left(a-b+c\right)\)
\(=\left(a-b+c\right)\left(3x^2+36xy+108y^2\right)\)
\(=3\left(a-b+c\right)\left(x^2+12xy+36y^2\right)\)
\(=3\left(a-b+c\right)\left(x+6y\right)^2\)
a/ \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)
\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)
\(=\left(2x-2\right)^2-\left(2y-2a\right)^2=\left(2x-2+2y-2a\right)\left(2x-2-2y+2a\right)\)
b/ \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)
Giải giúp bạn 2 bài tiêu biểu thôi nha
a) \((2x^2−3x)(5x^2−2x+1)\)
\(=2x^2.5x^2−2x^2.2x+2x^2−3x.5x^2+3x.2x−3x\)
\(=10x^4−4x^3+2x^2−15x^3+6x^2−3x\)
\(=10x^4−19x^3+8x^2−3x\)
b) \((x−2y)(3xy+5y^2+x)\)
\(=x.3xy+x.5y^2+x.x−2y.3xy−2y.5y^2−2y.x\)
\(=3x^2y+5xy^2+x^2−6xy^2−10y^3−2xy\)
\(=3x^2y−xy^2−2xy+x^2−10y^3\)
\(5x^3-5x=5x\left(x^2-1\right)\)
\(3x^2+5x-3xy-5x=x\left(3x+5\right)-x\left(3y+5\right)=x\left(3x-3y\right)=3x\left(x-y\right)\)
\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)\)
\(=\frac{1}{5}x^2y^2\left(15xy-5+3x\right)\)
\(=\frac{1}{5}\left(x.y\right)^2.\left(15xy-5+3x\right)\)
\(=\frac{1}{5}\left(15x^3y^3-5x^2y^2+3x^3y^2\right)\)