Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mk vs các bạn ơi, nếu bạn nào giúp mk đg, mk sẽ tất cả các phần của các bạn.
a) \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2015}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3B-B=1-\frac{1}{3^{2015}}\)
\(B=\frac{1-\frac{1}{3^{2015}}}{2}\)
ta có \(2004+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(=\left(1+\frac{2003}{2}\right)+\left(1+\frac{2002}{3}\right)...\left(1+\frac{1}{2004}\right)+1\)
\(=\frac{2005}{2}+\frac{2005}{3}+...+\frac{2005}{2004}+\frac{2005}{2005}\)
\(=2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)\)
\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2005}}{\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}}{2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)}\)
\(=\frac{1}{2005}\)
\(ĐặtA=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
\(2A=1-\frac{1}{3^{2005}}\)
\(A=\frac{1-\frac{1}{3^{2005}}}{2}\)
Ủng hộ mk nha ^_-
Đặt A = 1/3 + 1/32 + 1/33 + ... + 1/32005
3A = 1 + 1/3 + 1/32 + ... + 1/32004
3A - A = (1 + 1/3 + 1/32 + ... + 1/32004) - (1/3 + 1/32 + 1/33 + ... + 1/32005)
2A = 1 - 1/32005
A = 1 - 1/32005 / 2
Ủng hộ mk nha ^_-
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow3A-A=2A=1-\frac{1}{3^{2005}}=\frac{3^{2005}-1}{3^{2005}}\)
\(\Rightarrow A=\frac{3^{2005}-1}{2.3^{2005}}\)