K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

Bai 1

a) \(\sqrt{0,36}+\sqrt{0,49}=0,6+0,7=1,3\)

b) \(\sqrt{\frac{4}{9}}-\sqrt{\frac{25}{36}}=\frac{2}{3}-\frac{5}{6}\)

=\(-\frac{1}{6}\)

Bài 2

a)\(x^2=81\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)

b) \(\left(x-1\right)^2=\frac{9}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{3}{4}\\x-1=\frac{-3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)

c) \(x-2\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

d) \(x=\sqrt{x}\Rightarrow x-\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

17 tháng 7 2019

1. a) 3+2=5

b) 0,5-0,1=0,4

c) 4/5-1/9=31/45

d) 2-0,6=1,4

2. a) 8-4+3=7

b) 11+5-3=13

c) 3/2-4/6-7-37/6

d) 4+5-6=3

17 tháng 7 2019

Mơn nhìu <3

20 tháng 12 2018

a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)

\(\frac{1}{3}:2x=\frac{-21}{4}\)

\(2x=\frac{-4}{63}\)

\(x=\frac{2}{63}\)

20 tháng 12 2018

b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)

Vậy.........

21 tháng 10 2018

a) = \(\frac{7}{2}\)

b) = \(\frac{643}{64}\)

c) = 0

a: \(\Leftrightarrow4x+\dfrac{3}{4}=2\cdot\dfrac{2}{5}+0.01\cdot10=\dfrac{9}{10}\)

=>4x=3/20

hay x=3/80

b: \(\Leftrightarrow\left|x\right|=4+\dfrac{1}{8}-9=-\dfrac{39}{8}\)(vô lý)

c: 2x(x-2/3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

d: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)

=>259-7x=3x+39

=>-10x=-220

hay x=22

26 tháng 9 2015

a) \(-0,6^0+\frac{1}{2}.2-3x=-\frac{1}{4}\)

 

\(\Leftrightarrow-1+1-3x=-\frac{1}{4}\Leftrightarrow-3x=-\frac{1}{4}\Leftrightarrow3x=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}:3=\frac{1}{12}\)

 

b)\(2^{x-2}+22=3.2^x\Leftrightarrow3.2^x-2^{x-2}=22\Leftrightarrow2^{x-2}\left(3.2^2-1\right)=22\)

\(\Leftrightarrow2^{x-2}.11=22\Leftrightarrow2^{x-2}=2\Leftrightarrow x-2=1\Leftrightarrow x=3\)

c) \(\left(x-1\right)^2=\sqrt{\left(-\frac{9}{16}\right)^2}\Leftrightarrow\left(x-1\right)^2=\frac{9}{16}\Leftrightarrow\left(x-1\right)^2=\left(\frac{3}{4}\right)^2\)

TH1: x - 1 = 3/4 => x = 3/4 + 1  => x = 7/4

Th2: x - 1 = - 3/4 => x  = -3/4 +1 => x = 1/4

d) \(\Leftrightarrow\sqrt{x^2+2}=12-5=7\Leftrightarrow x^2+2=7^2\Leftrightarrow x^2=49-2\Leftrightarrow x^2=47\)

\(x=\sqrt{47};x=-\sqrt{47}\)

18 tháng 6 2017

Ta có : \(9^{x-1}=\frac{1}{9}\)

=> \(9^{x-1}=9^{-1}\)

=> x - 1 = -1

=> x = 0 

ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi 

=> 

18 tháng 6 2017

Cảm ơn bạn nha. Còn mấy phần kia bạn biết làm không?

\(\sqrt{\frac{1}{9}+\frac{1}{16}}\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}\)

\(\sqrt{4+36+81}\)

\(=\sqrt{121}\)

\(=\pm11\)

18 tháng 6 2017

Bài 1:

a, \(9^{x-1}=\dfrac{1}{9}\)

\(\Rightarrow9^{x-1}=9^{-1}\)

\(9\ne-1;9\ne0;9\ne1\) nên

\(x-1=-1\Rightarrow x=0\)

Vậy \(x=0\)

b, \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)

\(\Rightarrow\sqrt{7-3x^2}=\dfrac{1}{3}:\dfrac{2}{15}\)

\(\Rightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)

\(\Rightarrow\left(\sqrt{7-3x^2}\right)^2=\left(\dfrac{5}{2}\right)^2\)

\(\Rightarrow7-3x^2=\dfrac{25}{4}\)

\(\Rightarrow3x^2=\dfrac{3}{4}\Rightarrow x^2=\dfrac{1}{4}\)

\(\Rightarrow x=\pm\dfrac{1}{2}\)

Vậy \(x=\pm\dfrac{1}{2}\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 2:

Với mọi giá trị của \(x;y;z\in R\) ta có:

\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2\ge}0;\left|x+y+z\right|\ge0\)

\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\) với mọi giá trị của \(x;y;z\in R\).

Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\) thì

\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}-\sqrt{2}+z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)

Vậy \(x=\sqrt{2};y=-\sqrt{2};z=0\)

Chúc bạn học tốt!!!