K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

A = 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049

3 x A = 3 x ( 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )

3 x A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683

3 x A - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683

- ( 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )

= 1 - 1/59049

2 x A = 59048/59049

A = 59048/59049 : 2

A = 29524/59049

17 tháng 3 2016

A=$\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+......+\frac{1}{59049}$

3A=$\frac{1}+frac{1}{3}+\frac{1}{9}+\frac{1}{27}+......+\frac{1}{19683}$

3A-A=2A=1-1/59049=59048/59049

A=59048/118098

15 tháng 8 2015

I = 1 + 3^1 + 3^2 + ...+3^10

3I = 3^1 + 3^2 + ... + 3^11

3I - I = 3^1 + 3^2 + ... + 3^11 - 1 - 3^1 - 3^2 - ... - 3^10

 2I      = 3^11 - 1

I         = \(\frac{3^{11}-1}{2}=\frac{177147-1}{2}=\frac{177146}{2}=88573\)

18 tháng 8 2018

\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)

\(3S=3+1+\frac{1}{3}+...+\frac{1}{3^6}\)

\(3S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)

\(2S=3-\frac{1}{3^7}\)

\(S=\frac{3-\frac{1}{3^7}}{2}\)

18 tháng 8 2018

S= 1+ \(\frac{1}{3}\)\(\frac{1}{9}\)+...+ \(\frac{1}{729}\)\(\frac{1}{2187}\).

=> S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)\(\frac{1}{3^7}\).

=>3S= 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)\(\frac{1}{3^6}\).

=> 3S- S=( 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)\(\frac{1}{3^6}\))-( 1+ \(\frac{1}{3}\)\(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)\(\frac{1}{3^7}\)).

=> 2S= 3- \(\frac{1}{3^7}\).

=> 2S= 3- \(\frac{1}{2187}\).

=> 2S= \(\frac{6560}{2187}\).

=> S= \(\frac{6560}{2187}\): 2.

=> S= \(\frac{3280}{2187}\).

Vậy S= \(\frac{3280}{2187}\).

5 tháng 10 2016

Đặt \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3A=3\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)

\(3A=3+1+...+\frac{1}{3^4}\)

\(3A-A=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2A=3-\frac{1}{3^5}\)

\(A=\frac{3-\frac{1}{3^5}}{2}\)

 

 

5 tháng 10 2016

Đặt \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

      \(S=1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\)

\(S\times3=\left(1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\right)\times3\)

\(S\times3=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

Xét: \(S\times3-S=\left(3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)-\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

              \(S\times2=3-\frac{1}{243}\)

              \(S\times2=\frac{728}{243}\)

                    \(S=\frac{728}{243}\div2\)

                    \(S=\frac{364}{243}\)

Vậy \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{364}{243}\)

11 tháng 4 2018

=182.\(\orbr{\begin{cases}1.\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)\\2.\left(\frac{1}{2}+\frac{1}{9}+\frac{1}{27}\right)\end{cases}}:\frac{4.\left(\frac{1}{7}+\frac{1}{9}-\frac{1}{343}\right)}{1.\left(\frac{1}{3}+\frac{1}{49}-\frac{1}{343}\right)}:\frac{91}{80} \)

=.\(182.\left(\frac{1}{2}:\frac{4}{1}\right).\frac{91}{80}\)

=\(182.\frac{1}{8}.\frac{91}{80}\)

=.\(182.\frac{91}{640}\)

=\(\frac{8281}{320}\)

11 tháng 4 2018

\(=182.\left[\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2.\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}:\frac{4.\left(1-\frac{1}{7}+\frac{1}{9}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{9}-\frac{1}{343}}\right]:\frac{919191}{808080}\)

\(=182.\frac{1}{8}.\frac{808080}{919191}=\frac{182}{8}.\frac{80}{91}=20\)

16 tháng 3 2016

Đặt A= 1/3+1/9+1/27+1/81+1/243

A= 1/3+1/3^2+1/3^3+1/3^4+1/3^5

3A=1+1/3+1/3^2+1/3^3+1/3^4

3A-A=1+1/3+1/3^2+1/3^3+1/3^4-1/3-1/3^2-1/3^3-1/3^4-1/3^5

2A=1-1/3^5

2A=242/243

A=121/243

16 tháng 3 2016

ta bằng 121/243

duyệt nha