\(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3+3n^2-1}{n^2-2n}\)

2) tính 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

1: 

\(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3+3n^2-1}{n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^3\left(-3+\dfrac{3}{n}-\dfrac{1}{n^3}\right)}{n^2\left(1-\dfrac{2}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3}{n^2}=\lim\limits_{n\rightarrow\infty}-3n=-\infty\)

2: 

\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2-1}{-2n+3}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3-\dfrac{1}{n^2}\right)}{n\left(-2+\dfrac{3}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{-3}{2}n=-\infty\)

NV
28 tháng 2 2020

Giới hạn của dãy nên bạn tự hiểu n tiến tới dương vô cực

1.

\(lim\frac{3n+1}{\sqrt[3]{\left(n^3+3n+1\right)^2}+n\sqrt{n^3+3n+1}+n^2}=lim\frac{3+\frac{1}{n}}{\sqrt[3]{\frac{\left(n^3+3n+1\right)^2}{n^3}}+\sqrt{n^3+3n+1}+n}=\frac{3}{\infty}=0\)

b=\(lim\left(\sqrt[3]{n^3+2n}-n+n-\sqrt{n^2+1}\right)=lim\left(\frac{2n}{\sqrt[3]{\left(n^3+2n\right)^2}+n\sqrt[3]{n^3+2n}+n^2}-\frac{1}{n+\sqrt{n^2+1}}\right)\)

\(=lim\left(\frac{2}{\sqrt[3]{\frac{\left(n^3+2n\right)^2}{n^3}}+\sqrt[3]{n^3+2n}+n}-\frac{1}{n+\sqrt{n^2+1}}\right)=0-0=0\)

c\(=lim\left(\frac{2n^2+n}{\sqrt[3]{\left(n^3+n\right)^2}+\sqrt[3]{\left(n^3+n\right)\left(n^3-2n^2\right)}+\sqrt[3]{\left(n^3-2n^2\right)^2}}\right)\)

\(=lim\left(\frac{2+\frac{1}{n}}{\sqrt[3]{\left(1+\frac{1}{n^2}\right)^2}+\sqrt[3]{\left(1+\frac{1}{n^2}\right)\left(1-\frac{2}{n}\right)}+\sqrt[3]{\left(1-\frac{2}{n}\right)^2}}\right)=\frac{2}{1+1.1+1}=\frac{2}{3}\)

2.

a\(=lim\left[n\left(2-\sqrt{1+\frac{3}{n}}\right)\right]=+\infty\left(2-1\right)=+\infty\)

\(b=lim\left[n\left(\sqrt{1+\frac{2}{n^2}}-\sqrt{\frac{3}{n}+\frac{1}{n^2}}\right)\right]=+\infty\left(1-0\right)=+\infty\)

\(c=lim\left[n^3\left(\frac{sin2n}{n^2}-3\right)\right]=+\infty\left(0-3\right)=-\infty\)

9 tháng 8 2022

Jehheheu3uehegayaya

15 tháng 10 2023

1:

\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)

13 tháng 10 2023

1) \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}=\lim\limits_{n\rightarrow\infty}\dfrac{2n\left(1-\dfrac{4}{n}\right)}{n\left(1-\dfrac{1}{n}\right)}=2\)

2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(1+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n^3\left(4-\dfrac{2}{n^2}+\dfrac{5}{n^3}\right)}=\dfrac{1}{4n}=\infty\)

3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4n^4-3n^2+4\right)=\lim\limits_{n\rightarrow\infty}n^5\left(-2+\dfrac{4}{n}-\dfrac{3}{n^2}+\dfrac{4}{n^5}\right)=-2n^5=-\infty\)

15 tháng 10 2023

1: \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2-n+2}{n^3+2n^2-3}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(1-\dfrac{1}{n}+\dfrac{2}{n^2}\right)}{n^3\left(1+\dfrac{2}{n}-\dfrac{3}{n^3}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{1-\dfrac{1}{n}+\dfrac{2}{n^2}}{n\left(1+\dfrac{2}{n}-\dfrac{3}{n^3}\right)}=\lim\limits_{n\rightarrow\infty}\dfrac{1}{n}=0\)

2: 

\(\lim\limits_{n\rightarrow\infty}\dfrac{n+2}{3n^3+n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(1+\dfrac{2}{n}\right)}{n^3\left(3+\dfrac{1}{n}-\dfrac{2}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{1}{n^2}=0\)

15 tháng 10 2023

\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)

\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)

\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)

\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)

\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)

\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)

Vậy giới hạn \(\left(2\right)\) không xác định.

\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)

\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)

\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)

Vậy \(lim\left(3\right)\) không xác định.

24 tháng 11 2023

1: \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4n^4-3n^2+4\right)\)

\(=\lim\limits_{n\rightarrow\infty}\left[n^5\left(-2+\dfrac{4}{n}-\dfrac{3}{n^3}+\dfrac{4}{n^5}\right)\right]\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n^5=+\infty\\\lim\limits_{n\rightarrow\infty}\left(-2+\dfrac{4}{n}-\dfrac{3}{n^3}+\dfrac{4}{n^5}\right)=-2< 0\end{matrix}\right.\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(-3+\dfrac{2}{n^2}\right)}{n\left(1-\dfrac{2}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(-3+\dfrac{2}{n^2}\right)}{1-\dfrac{2}{n}}\)

\(=-\infty\) vì \(\lim\limits_{n\rightarrow\infty}n=+\infty;\lim\limits_{n\rightarrow\infty}\dfrac{-3+\dfrac{2}{n^2}}{1-\dfrac{2}{n}}=-\dfrac{3}{1}=-3< 0\)

4 tháng 4 2017

a) = = -4.

b) = = (2-x) = 4.

c) =
= = = .

d) = = -2.

e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.

f) = = -∞, vì > 0 với ∀x>0.