Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) x y 2 y z = x y 2 : y y z : y = x y z b ) a 00 a ¯ b 00 b ¯ = a 00 a ¯ : 1001 b 00 b ¯ : 1001 = a b
c ) a b 00 ab ¯ c d 00 c d ¯ = a b 00 ab ¯ : 10001 c d 00 c d ¯ : 10001 = a b ¯ c d ¯
d ) x y z − y z t y 2 z 2 − y z = y z ( x − 1 ) : ( − y z ) y z ( y z − 1 ) : ( − y z ) = t − x 1 − y z
a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)
b/3> hoặc = b/5 ( xảy randaaus bằng với a=0
Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0
\(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
\(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}\)
\(=5+\frac{1}{1+\frac{2}{7}}\)
\(=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}\)
\(=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)
\(\Rightarrow a=1,b=3,c=2\)
2a)
Gọi số cần tìm là abc.
Để abc = a.
Theo đề bài, ta có: a chia 25 dư 5 => a - 20 chia hết cho 25
a chia 28 dư 8 => a - 20 chia hết cho 28
a chia 35 dư 15 => a - 20 chia hết cho 35
Vậy a - 20 \(\in\)BC (25, 28, 35)
25 = 52
28 = 22 . 7
35 = 5 . 7
BCNN (25, 28, 35) = 52 . 22 . 7 = 700
a - 20 \(\in\)BC (25, 28, 35)
mà BC (25, 28, 35) = B (700)
nên a - 20 \(\in\) B (700) = {0 ; 700 ; 1400 ; 2800 ; ...}
Vậy a \(\in\){680 ; 1380 ; 2780 ; ...}
mà a là số có ba chữ số.
=> abc = 680.
Vậy số tự nhiên cần tìm là 680.
a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3
b) Có 4n-9=2(2n+1)-13
Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1
Vậy để 2(2n+1)-13 chia hết cho 2n+1
=> 13 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)
Ta có bảng
2n+1 | -13 | -1 | 1 | 3 |
2n | -14 | -2 | 0 | 2 |
n | -7 | -1 | 0 | 1 |
d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)
Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)
\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)