Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(a^2+b^2+c^2+2ac+2ab+2bc=a^2+b^2+c^2\)
\(ab+bc+ca=0\)
\(ab+bc=-ac\)
\(\left(ab+bc\right)^3=-a^3c^3\)
\(a^3c^3+a^3b^3+b^3c^3+3ab^2c\left(ab+bc\right)=0\)
\(a^3c^3+a^3b^3+b^3c^3=-3ab^2c\left(-ac\right)\)
\(a^3c^3+a^3b^3+b^3c^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ab}{c^2}+\dfrac{ac}{b^2}=\dfrac{b^3c^3+a^3b^3+a^3c^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
Ta có: \(a^3+b^3+c^3-3abc=0\) \(\Leftrightarrow a+b+c=0\) hoặc a = b = c
theo gt thi a + b + c \(\ne0\) \(\Rightarrow a=b=c\)
\(\Rightarrow N=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{9}{\dfrac{4}{3}}=\dfrac{9}{12}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{2}\)
Lời giải:
\((a+b+c)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ac=0\)
\(\Rightarrow ab+bc=-ac\). Từ đây suy ra:
\(M=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{(ab)^3+(bc)^3+(ca)^3}{(abc)^3}\)
\(=\frac{(ab)^3+(bc)^3+3(ab)^2(bc)+3(ab)(bc)^2-3(ab)^2(bc)-3(ab)(bc)^2+(ca)^3}{(abc)^3}\)
\(=\frac{(ab+bc)^3-3ab^2c(ab+bc)+(ca)^3}{(abc)^3}\)
\(=\frac{(-ca)^3-3ab^2c(-ca)+(ca)^3}{(abc)^3}\)
\(=\frac{3a^2b^2c^2}{(abc)^3}=\frac{3}{abc}\)
nhìn kinh vậy thôi dẽ mà @quế anh
2)
\(M=a^2+b^2+c^2-ab-ac-bc\) \(a\ne b\ne c\Rightarrow M\ne0\)
\(T=a^3+b^3+c^3-3abc=\left(a+b+c\right).M\)
\(A=\dfrac{T}{M}=\dfrac{\left(a+b+c\right).M}{M}=\left(a+b+c\right)=2016\)
1)
\(P=\left(4a^2+b^2+9+4ab-12a-6b\right)+3\left(b^2-2b+1\right)\)
\(P=\left(2a+b-3\right)^2+3\left(b-1\right)^2\ge0\)
DS: Pmin=0 ; tại b=1, a=1