K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

=> 3B = 3.( 1/2.5 + 1/5.8 + 1/8.11 + ........... + 1/122.125)

           = 3/2.5 + 3/5.8 + 3/ 8.11 + ......+ 3/122.125

Ta có: 3/ 2.5 = 1/2 - 1/5 

          3/5.8  = 1/5 -1/8

          3/ 8.11 = 1/8 -1/11

          ..........................

         3/122 . 125 = 3/122 - 3/125

=> 3B=  1/2 - 15/5 + 1/5 -1/8 +1/8 - 1/11 +........+1/122 - 1/125

         =  1/2 - 1/125 = 125/250 - 2/250= 123/250

=> B= 3B : 3 = 123/250 :3 = 123/250 . 1/3 = 41/250

22 tháng 8 2016

=> 2C = 2.(1/9.11 + 1/11.13 +....+ 1/97 .99)

           = 2/9.11 + 2/11 .13 +.....+ 2/ 97.99

Ta có: 2/9.11 = 1/9 - 1/11

          2/11.13 = 2/11 -2/ 13

         ...............................

         2/97.99 = 1/97 - 1/99

=> 2B = 1/9 - 1/11 + 1/11 - 1/13 + ....+ 1/97 - 1/99

           = 1/9 -1/99 = 11/99 - 1/99 =10/99

=> B= 2B : B = 10/99 :2 =10/99 . 1/2 = 5/99

Vậy B = 5/99

30 tháng 3 2018

a) \(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+.......+\frac{6}{44.47}+\frac{6}{47.50}\)

\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{44.47}+\frac{3}{47.50}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{44}-\frac{1}{47}+\frac{1}{47}-\frac{1}{50}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(=1-\frac{1}{25}\)

\(=\frac{24}{25}\)

30 tháng 3 2018

đặt \(A=\frac{1}{9.11}+\frac{1}{11.13}+........+\frac{1}{41.43}+\frac{1}{43.45}\)

\(2A=\frac{2}{9.11}+\frac{2}{11.13}+.......+\frac{2}{41.43}+\frac{2}{43.45}\)

\(2A=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{43}+\frac{1}{43}-\frac{1}{45}\)

\(2A=\frac{1}{9}-\frac{1}{45}\)

\(2A=\frac{4}{45}\)

\(A=\frac{4}{45}\div2\)

\(A=\frac{2}{45}\)

7 tháng 9 2016

\(\text{Ta có: }\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-....-\frac{1}{1024}\)

\(=\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-\left(\frac{1}{4}-\frac{1}{8}\right)-......-\left(\frac{1}{512}-\frac{1}{1024}\right)\)

\(=1-\frac{1}{1024}\)

\(=\frac{1023}{1024}\)

27 tháng 7 2018

\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(=\frac{1}{3}\cdot\frac{99}{202}=\frac{33}{202}\)

27 tháng 4 2017

= 1/3.(1/2-1/5)+1/3.(1/5-1/8)+....+1/3.(1/92-1/95)+1/3.(1/95-1/98)

=1/3.(1/2-1/5+1/5-1/8+....+1/92-1/95+1/95-1/98)

=1/3.(1/2-1/98)

=1/3.24/49

=8/49

27 tháng 4 2017

Phân tích: 1/2.5 = 1/2 - 1/5

1/5.8 = 1/5 - 1/8

1/8.11 = 1/8 - 1/11

...

1/92.95 = 1/92 - 1/95

1/95.98 = 1/95 - 1/98

Ta có: 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 +...+ 1/92 - 1/95 + 1/95 - 1/98

3 = 3/2.5 + 3/5.8 + 3/8.11 + ...+ 3/92.95 + 3/95.98

3 =  1 - 1/2 + 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 +...+ 1/92 - 1/95 + 1/95 - 1/98

= 1 - 1/98

= 97/98 : 3 = 97/98 x 1/3 = (tự tính)

5 tháng 4 2016

Mk bik câu B nè!

2B = 2/3.5 + 2/5.7 + 2/7.9 +.......+2/97.99

2B = 1/3 - 1/5 + 1/5 - 1/7 +.......+ 1/97 - 1/99

2B = 1/3 - 1/99

2B = 32/99

=> B = 16/99 

5 tháng 4 2016

Bạn có chắc là đúng ko vậy

21 tháng 5 2018

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{95\cdot98}\)

\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{95\cdot98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\cdot\frac{48}{98}\)

\(A=\frac{16}{98}=\frac{8}{49}\)

\(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(B=2\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{97\cdot100}\right)\)

\(B=2\left[\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\cdot\frac{99}{100}\right]\)

\(B=2\cdot\frac{33}{100}\)

\(B=\frac{33}{50}\)

21 tháng 5 2018

A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

3A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98

3A = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98

3A = 1/2 - 1/98

3A = 24/49

A = 24/49 : 3

A = 72/49

B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100

3/2B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100

3/2B = 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100

3/2B = 1 - 1/100

3/2B = 99/100

B = 99/100 : 3/2

B = 33/50

3 tháng 5 2019

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{98}{1545}\)

<=>\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{98}{1545}\)

<=>\(\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{x+3}\right)=\frac{98}{1545}\)

<=>\(\frac{1}{3}-\frac{1}{x+3}=\frac{98}{1545}:\frac{1}{3}\)

<=>\(\frac{1}{3}-\frac{1}{x+3}=\frac{98}{515}\)

<=>\(\frac{1}{x+3}=\frac{1}{3}-\frac{98}{515}\)

<=>\(\frac{1}{x+3}=\frac{221}{1545}\)

<=> \(x=?????\)

Hình như đề sai hay sao vậy bạn?

3 tháng 5 2019

hai dòng dưới đề ý trong ngoặc lúc đầu đâu có \(\frac{1}{3}\)

4 tháng 7 2016

1 +( -2) + 3 + (-4) +...+2001 + (-2002) + 2003

= [1 +( -2)] + [3 + (-4)] +...+ [-2000+2001] + [(-2002) + 2003]

= -1 + -1 +............ + 1 + 1

= 0

21 tháng 4 2016

A= -5/1/7+32/5=0.22857142857142286

B= -2/1/3-1/2/7=119047619047619