Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3(2^2+1)(2^4+1)(2^8+1)(2^16 +1) \)
\( = (2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)\)
\( = (2^4-1)(2^4+1)(2^8+1)(2^16+1) \)
\( = (2^8-1)(2^8+1)(2^16+1) \)
\(= (2^16 -1)(2^16+1) = 2^32 - 1\)
3(2^2 +1) (2^4 +1 ) (2^8 +1) (2^16 +1)
= (4-1)(2^2+1)(2^4 +1)(2^8+1)(2^16+1)
= [(2^2-1)(2^2+1)] (2^4+1) (2^8+1)(2^16+1)
=(2^4 -1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
= (2^16-1)(2^16+1)
= 2^23 -1
Chúc bạn học tốt
2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32-1
2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32-1
chúc bn hok tốt @_@
\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)
\(=x^3+2x^2-x-2-\left(x^3-4^3\right)\)
\(=x^3+2x^2-x-2-x^3+64\)
\(=2x^2-x+62\)
\(2x\left(3x-2\right)^2\)
\(=2x\left(9x^2-12x+4\right)\)
\(=18x^3-24x^2+8x\)
\(\left(x-3\right)\left(x^2-3x+9\right)\)
\(=x^3-3x^2+9x-3x^2+9x-27\)
\(=x^3-3x^2+18x-27\)
\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)
\(=\left(x^2-1^2\right)\left(x+2\right)-x^3-4^3\)
\(=\left(x+1\right)\left(x-1\right)\left(x+2\right)-x^3-64\)
a) \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=x^2-4-\left(x^2+x-3x-3\right)\)
\(=x^2-4-x^2-x+3x+3\)
\(=2x-1\)
b) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
Rút gọn đa thức sau:
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
mk ko ghi lại đề
= (4-1)(.......
=(2^2-1)(2^2+1)(.....
=(2^4-1)(2^4+1)(......
=....
=2^32-1
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x^{16}-1\right)\left(x^{16}+1\right)\)
\(=x^{32}-1\)
\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
\(B=\left(3x-1\right)^2+\left(5-3x\right)^2+\left(6x-2\right)\left(5-3x\right)\)
\(=\left(3x-1\right)^2+\left(5-3x\right)^2+2.\left(3x-1\right)\left(5-3x\right)\)
\(=\left(3x-1+5-3x\right)^2=4^2=16\)
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)+1\)
Đặt x = \(2^2+1\)ta được :
\(3x.x^2.x^4.x^8\)+1
= \(3x^{15}\)+1
thay x=\(2^2+1\)ta được:
\(3\left(2^2+1\right)^{15}+1=3.5^{15}+1\)
3(22+1)(24+1)(28+1)(216+1)+1
=3x5x17x257x65537+1
=4294967296
chọn đúng cho mình điểm nha!