Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{4^2.4^3}{(2^2)^5}=\dfrac{4^2.4^3}{4^5}=\dfrac{4^3}{4^3}=1\)
b) = 1215
c) = \(\dfrac{3}{16}\)
d) = (-27)
a: \(A=\dfrac{3^6\cdot3^8\cdot5^4-3^{13}\cdot5^{13}\cdot5^{-9}}{3^{12}\cdot5^6+5^6\cdot3^{12}}\)
\(=\dfrac{3^{14}\cdot5^4-3^{13}\cdot5^4}{2\cdot3^{12}\cdot5^6}\)
\(=\dfrac{3^{13}\cdot5^4\cdot\left(3-1\right)}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
c: \(C=\dfrac{\dfrac{27}{64}+\dfrac{125}{64}-5\cdot\dfrac{16-15}{12}}{\dfrac{25}{64}+\dfrac{4}{9}-\dfrac{5}{6}}\)
\(=\dfrac{47}{24}:\dfrac{1}{576}=47\cdot24=1128\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
~ Học tốt ~
Bài 1:
1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)
\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)
\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)
\(=3^2=9\)
2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)
\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)
\(=2^7:2^3:\dfrac{1}{2^4}\)
\(=2^4.2^4=256\)
3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)
\(=\dfrac{43}{48}\)
4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)
\(=-3-1+\dfrac{1}{8}\)
\(=-4+\dfrac{1}{8}\\ \)
\(=-\dfrac{31}{8}\)
5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)
Chúc bạn học tốt
a)\(\dfrac{2^{15}.3^8}{2^6.3^6.2^9}\)\(\dfrac{ }{ }\)=\(^{3^2}\)=9
b)\(\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.15}{-2^{12}.3^{12}-2^{11}.3^{11}}\)=\(\dfrac{2^{11}.3^{11}.\left(1+15\right)}{2^{11}.3^{11}\left(-2.3-1\right)}\)
=\(\dfrac{32}{-21}\)
c)\(\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)=\(\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)=\(-\dfrac{1}{3}\)
em dựa vào vd \(\dfrac{4^{16}}{2^8}\)= \(\dfrac{\left(2^2\right)^{16}}{2^8}=\dfrac{2^{16\cdot2}}{2^8}=2^4=16\)
Bài 5: GTNN chứ nhỉ?
Với mọi gt của \(x;y\in R\) ta có:
\(x^2+3\left|y-2\right|+1\ge1\)
Hay \(A\ge1\) với mọi gt của \(x;y\in R\)
Dấu "=" sảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy..................
Bài 6: GTLN chứ?
Với mọi giá trị của \(x\in R\) ta có:
\(-\left(2x-1\right)^2\le0\Rightarrow-5-\left(2x-1\right)^2\le-5\)
Hay \(B\le5\) với mọi giá trị của \(x\in R\)
Dấu "=" sảy ra khi và chỉ khi \(x=\dfrac{1}{2}\)
Vậy...................
Bài 4 :
\(a,3^{15}-9^6=3^{15}-\left(3^2\right)^6=3^{15}-3^{12}=3^{12}\left(3^3-1\right)=3^{12}.26=3^{12}.2.13⋮\left(đpcm\right)\)
\(b,8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)
Bài 5 :
\(A=1^2+3^2+6^2+9^2+.............+39^2\)
\(=1+3^2+\left(6^2+9^2+.........+39^2\right)\)
\(=10+3^2\left(2^2+3^2+.........+13^2\right)\)
\(=10+3^2.818\)
\(=10+9.818\)
\(=7372\)
a: \(=\left(\dfrac{5}{15}-\dfrac{12}{9}\right)+\left(\dfrac{14}{15}+\dfrac{11}{25}\right)+\dfrac{2}{7}\)
\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{70+33}{75}+\dfrac{2}{7}\)
\(=-1+\dfrac{2}{7}+\dfrac{103}{75}=\dfrac{-5}{7}+\dfrac{103}{75}=\dfrac{346}{525}\)
b: \(4\cdot\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\)
\(=4\cdot\dfrac{-1}{8}+\dfrac{1}{2}=\dfrac{-1}{2}+\dfrac{1}{2}=0\)
c: \(\dfrac{10^3+5\cdot10^2+5^3}{6^3+3\cdot6^2+3^3}=\dfrac{5^3\cdot8+5\cdot5^2\cdot2^2+5^3}{3^3\cdot2^3+3\cdot2^2\cdot3^2+3^3}\)
\(=\dfrac{5^3\left(8+4+1\right)}{3^3\left(8+4+1\right)}=\dfrac{125}{27}\)
e: \(\dfrac{2^8\cdot9^2}{6^4\cdot8^2}=\dfrac{2^8\cdot3^4}{3^4\cdot2^4\cdot2^6}=\dfrac{1}{4}\)
Bài 1:
a: \(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{5^{10}\cdot3^{20}\cdot5^{20}}{\left(5^2\right)^{15}\cdot3^{15}}=3^5\)
b: \(\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=3^2\)
\(P=\left(0,5-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right):\left(-2\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right).\left(-\dfrac{1}{2}\right)\)
\(=\left(\dfrac{-5-6}{10}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{12}\)
\(=-\dfrac{11}{10}:\left(-3\right)+\dfrac{1}{4}\)
\(=-\dfrac{11}{10}.\left(-\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{37}{60}\)
Vậy \(P=\dfrac{37}{60}\)
\(Q=\left(\dfrac{2}{25}-1,008\right):\dfrac{4}{7}:\left[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right):2\dfrac{2}{17}\right]\)
\(=\left(\dfrac{2}{25}-\dfrac{126}{125}\right):\dfrac{4}{7}:\left[\left(\dfrac{13}{4}-\dfrac{59}{9}\right).\dfrac{36}{17}\right]\)
\(=-\dfrac{116}{125}.\dfrac{7}{4}:\left(-\dfrac{119}{36}.\dfrac{36}{17}\right)\)
\(=\dfrac{-29.7}{125}:\left(-7\right)=\dfrac{29}{125}\)
Vậy \(Q=\dfrac{29}{125}\)
a: \(=\dfrac{2^5\cdot3^5\cdot2^{12}\cdot2^{16}\cdot5^{16}}{2^{30}\cdot3^{10}\cdot5^{16}}=\dfrac{2^{33}\cdot3^5}{2^{30}\cdot3^{10}}=\dfrac{8}{243}\)
c: \(=\dfrac{4^7\cdot3^{12}\cdot5^4+3^{12}\cdot5^6\cdot4^7}{2^{14}\cdot3^{14}\cdot5^4+2^{14}\cdot3^{14}\cdot5^6}\)
\(=\dfrac{2^{14}\cdot3^{12}\cdot5^4\left(1+25\right)}{2^{14}\cdot3^{14}\cdot5^4\left(1+25\right)}=\dfrac{1}{9}\)