Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Để \(A\cap B=\oslash\) thì \(\left[\begin{matrix} a+2\leq 1\\ a> 5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} a\leq -1\\ a> 5\end{matrix}\right.\)
b)
\(A\subset B\) khi \(\left\{\begin{matrix} a>1\\ a+2\leq 5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a> 1\\ a\leq 3\end{matrix}\right.\)
\(\Rightarrow a\in (1;3]\)
c)
\(B\subset A\) khi \(\left\{\begin{matrix} 1\geq a\\ 5< a+2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a\leq 1\\ a>3\end{matrix}\right.\) (hoàn toàn vô lý)
Tức là không có giá trị $a$ thỏa mãn
Hoặc có thể dễ thấy độ dài biểu diễn trên trên trục số của $B$ luôn lớn hơn $A$ nên $B$ không thể là tập con của $A$
Bài 1:a=b*\(\frac{m}{n}\)
Bài 2:b=a:\(\frac{3}{2}\)
Bài 3:cho hỏi tỉ số % hở
a3+b3+c3=3abc
<=>(a+b)3-3ab(a+b)-3abc+c3=0
<=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab.(a+b+c)=0
<=>(a+b+c)(a2+b2+c2-ab-bc-ac)=0
<=>(a+b+c)(2a2+2b2+2c2-2ab-2bc-2ac)=0
<=>(a+b+c)[(a-b)2+(b-c)2+(c-a)2]=0
<=>a+b+c=0 [(a-b)2+(b-c)2+(c-a)2 khác 0]
=>a2+b2-c2=-2ab;b2+c2-a2=-2bc;c2+a2-b2=-2ac
Suy ra : P=\(-\left(\dfrac{1}{2ab}+\dfrac{1}{2bc}+\dfrac{1}{2ac}\right)=-\dfrac{a+b+c}{2abc}=0\)
\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)
\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)
\(a^2-b^2=3^2-2^2=5\).
1)(a;b)=(-20;9)
=>a+b=-11
2)a=7/2
3.1/3