K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

Câu a) 

Em tham khảo link: Câu hỏi của I have a crazy idea - Toán lớp 6 - Học toán với OnlineMath

Ta có bài toán

Pn-Pn-1=(n-1)Pn-1

Chứng minh

Ta có    Pn-Pn-1=n!-(n-1)!

                         =n(n-1)!-(n-1)!

                         =(n-1)(n-1)!=(n-1)Pn-1

=>Pn-Pn-1=(n-1)Pn-1

Từ kết quả trên ta có

P2-P1=(2-1)P1

P3-P2=(3-1)P2

...............

Pn=Pn-1=(n-1)Pn-1

-----------------------------

Pn-P1=P1+2P2+3P3+.........+(n-1)P1

=>1+1.P1+2P2+3P3+...+n.Pn=Pn+1

14 tháng 3 2018

Trên nửa mặt phẳng bờ là đường thẳng đi qua hai điểm B, C. Vẽ tia Bx sao cho góc CBx = 70 độ, vẽ tia Cy sao cho góc BCy = 110 độ

a) Chỉ ra các cặp góc bù nhau

b) Qua hình vẽ, dự đoán gì về 2 tia Bx, Cy ?

LÀM HỘ EM ĐƯỢC KHÔNG Ạ ? EM CẢM ƠN NHIỀU Ạ

13 tháng 8 2020

a,

\(2^2=\left(1+1\right)^2=1^2+2.1+1\)

\(3^2=\left(2+1\right)^2=2^2+2.2+1\)

....

\(\left(n+1\right)^2=n^2+2n+1\)

Cộng theo từng vế của các đẳng thức:

\(2^2+3^2+...+\left(n+1\right)^2=1^2+2^2+...+n^2+2\left(1+2+...+n\right)+n\)

\(\Leftrightarrow\left(n+1\right)^2=1+2S+n\)

\(\Leftrightarrow2S=\left(n+1\right)^2-\left(n+1\right)\)

\(\Leftrightarrow2S=\left(n+1\right)n\)

\(\Leftrightarrow S=\frac{n\left(n+1\right)}{2}\)

b, Tương tự a

\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)

\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)

...

\(\left(n+1\right)^3=n^3+3n^2+3n+1\)

Cộng theo từng vế của các đẳng thức:

\(2^3+3^3+...+\left(n+1\right)^3=1^3+2^3+...+n^3+3\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)+n\)

\(\Leftrightarrow\left(n+1\right)^3=1+3S_1+3S+n\)

\(\Leftrightarrow\left(n+1\right)^3-\left(n+1\right)-3S=3S_1\)

\(3S_1=n\left(n+1\right)\left(n+2\right)-\frac{3n\left(n+1\right)}{2}\)

\(\Leftrightarrow3S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{2}\)

\(\Leftrightarrow S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

21 tháng 12 2018

\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)

            \(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)

\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)

Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên

                                \(\Leftrightarrow10⋮2x+1\)

                                \(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)

\(\Rightarrow x=-1;0;-3;2\)

Vậy.......................

20 tháng 6 2018

Giải:

\(S=\left(x+2\right)^3-6x\left(x+2\right)+\left(2x-1\right)^3+6x\left(2x-1\right)-9\left(x^3-2\right)\)

\(\Leftrightarrow S=x^3+6x^2+12x+8-6x^2-12x+8x^3-12x^2+6x-1+12x^2-6x-9x^3-18\)

\(\Leftrightarrow S=8-1-18\)

\(\Leftrightarrow S=-11\)

Vậy ...

Câu 2 có sai đề không ạ, mình làm không ra

20 tháng 6 2018

Câu 2 đề sai nha bạn

AH
Akai Haruma
Giáo viên
18 tháng 1 2024

Lời giải:

$H=x^3+(2y)^3-x^3(1-y^3)-8y^3+6x^2y^2+12xy+8$
$=x^3+8y^3-x^3+x^3y^3-8y^3+6x^2y^2+12xy+8$

$=(x^3-x^3)+(8y^3-8y^3)+x^3y^3+6x^2y^2+12xy+8$

$=x^3y^3+6x^2y^2+12xy+8$