K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Đặt \(\left\{{}\begin{matrix}x^{671}=a\\y^{671}=b\end{matrix}\right.\). Bài toán trở thành

Cho \(a+b=0,67\)\(a^2+b^2=1,34\). Tính \(A=a^3+b^3\)

Giải:

\(a^2+2ab+b^2=0,4489\)

\(\Rightarrow ab=\dfrac{0,4489-1,34}{2}=-0,44555\)

\(A=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=1,1963185\)

28 tháng 9 2017

\(4B=\dfrac{4}{\sqrt{5}+1}+\dfrac{4}{\sqrt{6}+\sqrt{2}}+...+\dfrac{4}{\sqrt{2014}+\sqrt{2010}}\)

\(=\dfrac{4\left(\sqrt{5}-1\right)}{5-1}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}+...+\dfrac{4\left(\sqrt{2014}-\sqrt{2010}\right)}{2014-2010}\)

\(=\sqrt{5}-1+\sqrt{6}-\sqrt{2}+...+\sqrt{2014}-\sqrt{2010}\)

\(=-1-\sqrt{2}-\sqrt{3}-\sqrt{4}+\sqrt{2011}+\sqrt{2012}+\sqrt{2013}+\sqrt{2014}\)

\(\Rightarrow B=...\)

18 tháng 6 2017

Bài 3:

a) \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a+1}\right)}\right)\)

\(=\dfrac{a-1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}:\dfrac{1}{\sqrt{a}-1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\left(\sqrt{a}-1\right)\)

\(=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

\(=\dfrac{a-1}{\sqrt{a}}\)

b) Thay \(a=3+2\sqrt{2}\) vào biểu thức A:

Ta có: \(\dfrac{3+2\sqrt{2}-1}{\sqrt{3+2\sqrt{2}}}=\dfrac{2+2\sqrt{2}}{\sqrt{\left(1+2\sqrt{2}\right)^2}}=\dfrac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=2\)

Vậy giá trị biểu thức A tại \(a=3+2\sqrt{2}\)

18 tháng 6 2017

Bài 1:

Sửa đề: (theo mình là như vậy)

\(x^4-4x^2-12x-9\)

\(=x^4+x^3-x^3-x^2-3x^2-3x-9x-9\)

\(=\left(x^4+x^3\right)-\left(x^3+x^2\right)-\left(3x^2+3x\right)-\left(9x+9\right)\)

\(=x^3.\left(x+1\right)-x^2.\left(x+1\right)-3x.\left(x+1\right)-9.\left(x+1\right)\)

\(=\left(x+1\right).\left(x^3-x^2-3x-9\right)\)

\(=\left(x+1\right).\left(x^3-3x^2+2x-6x+3x-9\right)\)

\(=\left(x+1\right).\left[\left(x^3-3x^2\right)+\left(2x-6x\right)+\left(3x-9\right)\right]\)

\(=\left(x+1\right).\left[x^2.\left(x-3\right)+2x.\left(x-3\right)+3.\left(x-3\right)\right]\)

\(=\left(x+1\right).\left(x-3\right).\left(x^2+2x+3\right)\)

Chúc bạn học tốt!!!

1 tháng 8 2018

Bài 1:

a. ta có \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

=\(\sqrt{xy}\)

b.ĐK: x ≠ 1

Ta có: A= \(\sqrt{\dfrac{x+2\sqrt{x}+1}{x-2\sqrt{x}+1}}\)=\(\sqrt{\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2}}\)=\(\dfrac{\sqrt{x}+1}{\left|\sqrt{x}-1\right|}\)

*Nếu \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge1\)

⇒ A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

*Nếu \(\sqrt{x}-1< 0\Rightarrow\sqrt{x}< 1\)

⇒ A=\(\dfrac{\sqrt{x}+1}{-\sqrt{x}+1}\)

c.Ta có:

a: \(=\dfrac{2\sqrt{7}-10-6+\sqrt{7}}{4}+\dfrac{24+6\sqrt{7}-20+5\sqrt{7}}{9}\)

\(=\dfrac{3\sqrt{7}-16}{4}+\dfrac{4+11\sqrt{7}}{9}\)

\(=\dfrac{27\sqrt{7}-144+16+44\sqrt{7}}{36}=\dfrac{71\sqrt{7}-128}{36}\)

b: \(=\dfrac{\sqrt{y}\left(x+y\right)}{\sqrt{xy}}\cdot\dfrac{\sqrt{x}-\sqrt{y}}{x+y}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}}\)

c: \(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)+3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right)\cdot\dfrac{3\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+3\sqrt{x}-1}{3\sqrt{x}+1}\cdot\dfrac{1}{3\sqrt{x}-5}\)

\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)}\cdot\dfrac{1}{3\sqrt{x}-5}\)

\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-5\right)}\)

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

4 tháng 8 2018

1. \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)

\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(=\sqrt{a}+2-\sqrt{a}-2\)

= 0

2: \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\)

\(=\sqrt{x}-\sqrt{y}+\sqrt{y}-\sqrt{x}=0\)

4: \(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\dfrac{1}{1+\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}=\sqrt{a}+1\)

a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)

b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)

\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)

g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)

 

2 tháng 9 2018

Đề câu c co bị sai ko vậy bạn? (y - 2\(\sqrt{x}\) +1)

a: \(=\sqrt{3}+1-\sqrt{3}=1\)

b: \(=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

c: Sửa đề:\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{\left(x-1\right)}\)