Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
a/ Ta có x, y tỉ lệ với 2, 3 => \(\frac{x}{2}=\frac{y}{3}\)
và \(x+y=-15\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{-15}{5}=-3\)
=> \(\hept{\begin{cases}\frac{x}{2}=-3\\\frac{y}{3}=-3\end{cases}}\)=> \(\hept{\begin{cases}x=-6\\y=-9\end{cases}}\)
b/ Ta có \(\frac{x}{y}=\frac{7}{20}\)
=> \(\frac{x}{7}=\frac{y}{20}\)
=> \(\frac{x}{7}.\frac{1}{7}=\frac{y}{20}.\frac{1}{7}\)
=> \(\frac{x}{49}=\frac{y}{140}\)(1)
và \(\frac{y}{z}=\frac{7}{3}\)
=> \(\frac{y}{7}=\frac{z}{3}\)
=> \(\frac{y}{7}.\frac{1}{20}=\frac{z}{3}.\frac{1}{20}\)
=> \(\frac{y}{140}=\frac{z}{60}\)(2)
Từ (1) và (2)
=> \(\frac{x}{49}=\frac{y}{140}=\frac{z}{60}\)
Đến đây là thiếu đề rồi bạn!!!
c/ Ta có \(\frac{3}{y}=\frac{7}{x}\)
=> \(\frac{y}{3}=\frac{x}{7}\)
và \(x+16=y\)
=> \(x-y=-16\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)
=> \(\hept{\begin{cases}\frac{x}{7}=-4\\\frac{y}{3}=-4\end{cases}}\)=> \(\hept{\begin{cases}x=-28\\y=-12\end{cases}}\)
d/ Ta có x, y tỉ lệ với 5 và 3
=> \(\frac{x}{5}=\frac{y}{3}\)
=> \(\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x}{5}=\frac{1}{4}\\\frac{y}{3}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{5}{4}\\y=\frac{3}{4}\end{cases}}\)
e/ Thiếu đề bạn ơi!!!
f/ Ta có \(3x=2y\)
=> \(\frac{x}{2}=\frac{y}{3}\)
=> \(\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\)
=> \(\frac{x}{10}=\frac{y}{15}\)(1)
và \(7y=5z\)
=> \(\frac{y}{5}=\frac{z}{7}\)
=> \(\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\)
=> \(\frac{y}{15}=\frac{z}{21}\)(2)
Từ (1) và (2)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{2x}{20}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{20}=\frac{y}{15}=\frac{z}{21}=\frac{2x+y-z}{20+15-21}=\frac{-28}{14}=-2\)
=> \(\hept{\begin{cases}\frac{x}{10}=-2\\\frac{y}{15}=-2\\\frac{z}{21}=-2\end{cases}}\)=> \(\hept{\begin{cases}x=-20\\y=-30\\z=-42\end{cases}}\)
a)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{98}{48}=\frac{49}{23}\)
suy ra :
\(\frac{x}{10}=\frac{49}{23}\Rightarrow x=\frac{490}{23}\)
\(\frac{y}{15}=\frac{49}{23}\Rightarrow y=\frac{735}{23}\)
\(\frac{z}{21}=\frac{49}{23}\Rightarrow z=\frac{1029}{23}\)
bạn xem lại đề ra số hơi xấu
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\). Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow x=16;y=24;z=30\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x2=y3=y4=z5⇔x8=y12=z15=x+y−z8+12−15=105=2x2=y3=y4=z5⇔x8=y12=z15=x+y−z8+12−15=105=2
Vậy:
x = 2.8=16
y = 2.12 = 24
z = 2.15 = 30