Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)
\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)
\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)
Xin lỗi mình chỉ làm được câu a)
1. a) \(2009-\left|x-2009\right|=x\)
\(\Rightarrow\left|x-2009\right|=2009-x\)
\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)
\(\Rightarrow x-2009\le0\)
\(\Rightarrow x\le2009\)
Vậy \(x\le2009.\)
b) Ta có: \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x,y,z\end{matrix}\right.\) \(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)
Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}=0\\\left(y-\dfrac{2}{5}\right)^{2008}=0\\\left|x+y-z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\).
Bạn kia làm câu 1 rồi thì mình làm câu 2 nhé!
2. Ta có:\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)
\(\Rightarrow\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{5b-3c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{15a-10b+6c-15a}{25+9}\)=\(\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)
\(\Rightarrow\dfrac{-5b+3c}{17}=\dfrac{5b-3c}{2}\Rightarrow5b-3c=0\)
=> 5b=3c =>\(\left\{{}\begin{matrix}b=\dfrac{3}{5}c\\a=\dfrac{2}{5}c\end{matrix}\right.\)
=>\(\dfrac{3}{5}c+\dfrac{2}{5}c+c=-50\)
=> \(c\left(\dfrac{3}{5}+\dfrac{2}{5}+1\right)=-50\)
=> 2c = -50
=> c= -25
=>\(\left\{{}\begin{matrix}b=-25.\dfrac{3}{5}=-15\\a=-25.\dfrac{2}{5}=-10\end{matrix}\right.\)
Vậy a= -10; b= -15; c= -25
a, 1+2y / 18 = 1+4y / 24 = 1+6y / 6x
Ta có : 1+2y / 18 = 1+6y / 6x = 1+2y + 1+6y / 18 + 6y
= 2+ 8y / 18+6y = 2 (1+4y) / 2( 9 +3y) = 1+4y/9+3y
Ta lại có : 1 + 4y/24 = 1+4y / 9+3y
=> 24=9+3y => 15=3y => y=5
Vậy y=5
Nhớ like
b, 1+3y/12 = 1+5y/5x = 1+7y/4x
Ta có : 1+3y/12 = 1+7y/4x = 1+3y+1+7y / 12 +4x
= 2 + 10y / 12 +4x = 2 (1+5y) / 2 (6+2x) = 1+5y / 6+2x
Ta lại có: 1+5y / 5x = 1+5y / 6+2x
=> 5x = 6+2x => 3x = 6 => x=2
Vậy x =2
Ta luôn có :|x-2009|\(\ge\)0(1)
Mà :2009-|x-2009|=x nên 2009\(\ge\)x(2)
Vì (1)và(2) nên ta có x \(\in\){0;1;2;3;4;5;...;2009}
a)
\(2009-\left|x-2009\right|=x\)
\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)
\(\Rightarrow x-2009\le0\)
\(\Rightarrow x\le2009\)
Vậy \(x\le2009\)
b)
Vì \(\left(2x+1\right)^{2008}\ge0\forall x\)
\(\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)
Mà theo đề bài :
\(\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
\(\Rightarrow\left(2x+1\right)^{2008}=0;\left(y-\dfrac{2}{5}\right)^{2008}=0;\left|x+y-z\right|=0\)
*) Với \(\left(2x+1\right)^{2008}=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
*) Với \(\left(y-\dfrac{2}{5}\right)^{2008}=0\)
\(\Rightarrow y-\dfrac{2}{5}=0\)
\(\Rightarrow y=\dfrac{2}{5}\)
*) Với \(\left|x+y-z\right|=0\)
\(\Rightarrow x+y-z=0\)
\(\Rightarrow\dfrac{-1}{2}+\dfrac{2}{5}-z=0\)
\(\Rightarrow\dfrac{-1}{10}-z=0\)
\(\Rightarrow z=\dfrac{-1}{10}\)
Vậy \(x=\dfrac{-1}{2};y=\dfrac{2}{5};z=\dfrac{-1}{10}\)
a, 2009 - \(\left|x-2009\right|\) = x
=> \(\left|x-2009\right|\) = 2009 - x
=> \(\left[{}\begin{matrix}x-2009=2009-x\\x-2009=-2009-x\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=4018\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2009\\x=0\end{matrix}\right.\)
Vậy x \(\in\)n { 2009 ; 0 }
a) \(2009-\left|x-2009\right|=x\)
* Nếu \(x-2009\ge0\Rightarrow x\ge2009\)
\(2009-\left(x-2009\right)=x\)
\(2009-x+2009=x\)
\(4018=2x\)
\(x=2009\)(TMĐK)
* Nếu \(x-2009< 0\Rightarrow x< 2009\)
\(2009-\left[-\left(x-2009\right)\right]=x\)
\(2009-\left(-x+2009\right)=x\)
\(2009+x-2009=x\)
\(0x=0\)
Nên \(x\in R\) trừ \(x< 2009\)
Vậy .......
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
a) ta có : \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{x}{16}=\dfrac{y}{24}\) ( 1)
\(\dfrac{y}{8}=\dfrac{z}{5}\) = \(\dfrac{y}{24}=\dfrac{z}{15}\) (2)
từ (1) và (2) , ta có : \(\dfrac{x}{16}=\dfrac{y}{24}=\dfrac{z}{15}\)
mà x - y + z = 35
theo tính chất của dãy tỉ số bằng nhau , ta có :
\(\dfrac{x}{16}=\dfrac{y}{24}=\dfrac{z}{15}=\dfrac{x-y+z}{16-24+15}=\dfrac{35}{7}=5\)
do đó : \(\dfrac{x}{16}=5\) => x = 5. 16 = 80
\(\dfrac{y}{24}=5\) => y = 5.24 = 120
\(\dfrac{z}{15}=5\) => z = 5.15 = 75
vậy x = 80
y = 120
z = 75
Vi 8x = 5y , 7y = 12z
=>\(\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{y}{8}\\\dfrac{y}{12}=\dfrac{z}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{60}=\dfrac{y}{96}\\\dfrac{y}{96}=\dfrac{z}{56}\end{matrix}\right.\)
=> \(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}\)
Ap dung tinh chat day ti so bang nhau co
\(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}=\dfrac{x+y+z}{60+96+56}=\dfrac{-318}{212}=\dfrac{-3}{2}\)
\(\dfrac{x}{60}=\dfrac{-3}{2}\Rightarrow x=60.\dfrac{-3}{2}=-90\)
\(\dfrac{y}{96}=\dfrac{-3}{2}\Rightarrow y=96.\dfrac{-3}{2}=-144\)
\(\dfrac{z}{56}=\dfrac{-3}{2}\Rightarrow z=56.\dfrac{-3}{2}=-84\)
Vay x= -90, y= -144 va z=-84
c: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
d: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=9/10
a: 8x=5y; 7y=12z
=>x/5=y/8; y/12=z/7
=>x/15=y/24=z/14
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{15}=\dfrac{y}{24}=\dfrac{z}{14}=\dfrac{x+y+z}{15+24+14}=-\dfrac{318}{53}=-6\)
=>x=-90; y=-144; z=-84