Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-2y2=1
xét y=2=>x2=1+2.22=9=32
=>x=3(t/mãn)
xét y=3=>x2=32.2+1=19(loại)
xét y>3
=>y không chia hết cho 3
=>y2 chia 3 dư 1
=>2y2 chia 3 dư 2
=>x2 chia hết cho 3
=>x chia hết cho 3
=>x là hợp số(trái giả thuyết)
=>x=3;y=2
Vậy (x;y)=(3;2)
x phải là một số lẻ vì x chẵn Vế trái luôn chẵn (vế phải =1 lẻ)
vậy x=2n+1
x^2=4n^2+4n+1
2n^2+2n-y^2=0
2n(n+1)=y^2
n=2(n+1) vô lý
2n=n+1=> n=1
x=3
y=2
(x - 2)2 . (y - 3)2 = -4
[(x - 2) . (y - 3)]2 = -4
Vì \(\left[\left(x-2\right).\left(y-3\right)\right]^2\ge0\)
Mà \(-4< 0\)
=> Không có giá trị x , y thõa mãn yêu cầu đề bài
\(\left(x-2\right)^2.\left(y-3^2\right)=-4\)
\(\left[\left(x-2\right).\left(y-3\right)\right]^2=-4\)
Vì \(\left[\left(x-2\right).\left(y-3\right)\right]^2\ge0\)
mà -4 < 0
Ta có: x2 - 2x + 1 = 6y2 - 2x + 2.
=> x2 - 1 = 6y2 => 6y2 = (x - 1) . (x + 1) chia hết cho 2, do 6y2 chai hết cho 2.
Mặt khác x - 1 + x + 1 = 2x chia hết cho 2 => (x - 1) và (x + 1) cùng chẵn hoặc cùng lẻ.
Vậy (x - 1) và (x + 1) cùng chẵn => (x - 1) và (x + 1) là hai số chẵn liên tiếp.
(x - 1) . (x + 1) chia hết cho 8 => 6y2 chia hết cho 8 => 3y2 chia hết cho 4 => y2 chia hết cho 4 => y chia hết cho 2
Từ đó suy ra y = 2 (Vì y là số nguyên tố), tìm được x = 5.
Nếu x=2 =>4+y2=17
=>y2=13 ( loại )
Nếu x=3 =>8+y2=17
=>y2=9
=>y2=32
=>y=3
Vậy (x;y)=(3;3)