Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
a, Áp dụng định lí Pytago cho ∆ABC ta có:
AB2 + AC2 = BC2
=> AB2 + 82 = 102
=> AB2 = 100 - 64 = 36
=> AB = 6 cm
Vì AB = AD mà A nằm giữa B và D (cách vẽ) => BD = 2AB = 12cm
b, Xét ∆ABC và ∆ADC, ta có:
- AB = AD (gt)
- góc DAC = góc BAC = 90o
- CA là cạnh chung (gt)
=> ∆ABC = ∆ADC (c-g-c)
c, Xét ∆ECD và ∆EBF, ta có:
- góc FBE = góc DCE [so le trong]
- EB = EC (E là trung điểm BC)
- góc CED = góc BEF (đối đỉnh)
=> ∆ECD = ∆EBF (g-c-g)
=> DE = EF
d,
Vì ∆ECD = ∆EBF => CD = BF
Mà DB + BF > DF (bất đẳng thức tam giác)
\(\Rightarrow\frac{DB+BF}{2}>\frac{DF}{2}=DE\)
\(\Leftrightarrow\frac{DB+DC}{2}>DE\)
Bài 3:
a: Xét ΔAEM và ΔCEB có
EA=EC
\(\widehat{AEM}=\widehat{CEB}\)
EM=EB
Do đó: ΔAEM=ΔCEB
b: Xét tứ giác ABCM có
E là trung điểm của AC
E là trung điểm của BM
Do đó: ABCM là hình bình hành
Suy ra: AM//BC
a: Xét ΔAEM và ΔCEB có
EA=EC
ˆAEM=ˆCEB
EM=EB
Do đó: ΔAEM=ΔCEB
b: Xét tứ giác ABCM có
E là trung điểm của AC
E là trung điểm của BM
Do đó: ABCM là hình bình hành
Suy ra: AM//BC
Ta có hình vẽ:
A B C D E F
a/ Xét tam giác ADE và tam giác EFC có:
DE = EF (GT)
góc AED = góc FEC (đối đỉnh)
AE = EC (GT)
=> tam giác ADE = tam giác EFC (c.g.c)
=> AD = CF (2 cạnh tương ứng)
Ta có: AD = DB (GT)
AD = CF (đã chứng minh trên)
=> DB = CF (1)
Ta có: tam giác ADE = tam giác EFC
=> góc DAE = góc ECF (2 góc tương ứng)
MÀ 2 góc này đang ở vị trí so le trong
=> AD // CF
Vì A,D,B thẳng hàng => DB // CF
=> góc BDC = góc DCF (so le trong) (2)
Ta có: DC: cạnh chung (3)
Từ (1),(2),(3) =>tam giác BDC = tam giác DCF
=> góc FDC = góc DCB (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> DF // BC (đpcm)
b/ Ta có: tam giác BDC = tam giác DCF
=> DF = BC (2 cạnh tương ứng) (1)
Mà theo giả thuyết EF = ED tức DE = EF = \(\frac{1}{2}\)DF (2)
Từ (1),(2) => DE = \(\frac{1}{2}\)BC
a) đề sai nhé bn, sửa BD thành BC
Xét t/g AED và t/g CEF có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, t/g AED = t/g CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong nên EC // AD hay EC // AB
Nối đoạn CD
Xét t/g BDC và t/g FCD có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, t/g BDC = t/g FCD (c.g.c)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong nên DF // BC (đpcm)
b) t/g BDC = t/g FCD (câu a)
=> BC = FD (2 cạnh tương ứng)
Mà DE = EF = 1/2 BC suy ra DE = 1/2 BC (đpcm)