K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

.2. 

17^14 < 16^14 = (2^4)^14 =2^56  (1)

31^11 < 32 ^11 = ( 2^5 )^11 = 2^55 (2)

.Từ (1) và (2) suy ra: 31^11 < 17^14 ( đpcm )

.Rất đơn giản mà bạn

5 tháng 8 2016

2.

31^11<32^11=(2^5)^11=2^55

17^14>16^14=(2^4)^14=2^56. Vậy 17^14>31^11

1.   Để ( x-5 )4 + | y - 4 | = 0

- Khi (x-5)^4=0 và |y^2-4|=0

 + (x-5)^4=0

=> x-5=0 => x=5

 + |y^2-4|=0

=> y^2-4=0 => y^2=4 => y^2=2^2=>y=2

Vậy x=5 ; y=2

2 tháng 11 2017

a) Ta có :\(\left(x+2\right)^2\ge0;\left(y-4\right)^4\ge0;Với\forall x,y\in Z\)

\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)

Vậy để  (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3

b)Ta có :\(\left(x+y-11\right)^2\ge0;\left(x-y-4\right)^2\ge0;Với\forall x,y\in Z\)

\(\Rightarrow\orbr{\begin{cases}\left(x+y-11\right)^2=0\\\left(x-y-4\right)^2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+y=11\\x-y=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\left(11+4\right):2=7,5\\y=\left(11-4\right):2=3,5\end{cases}}\)

Vậy để  (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5

a) Ta có :(x+2)2≥0;(y−4)4≥0;Với∀x,y∈Z

⇒[

(x+2)2=0
(y−3)4=0

⇒[

x+2=0
y−3=0

⇒[

x=−2
y=3

Vậy để  (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3

b)Ta có :(x+y−11)2≥0;(x−y−4)2≥0;Với∀x,y∈Z

⇒[

(x+y−11)2=0
(x−y−4)2=0

⇒[

x+y=11
x−y=4

⇒[

x=(11+4):2=7,5
y=(11−4):2=3,5

Vậy để  (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5

10 tháng 10 2018

câu 1

a(0,125)3x83=(0,125x8)3=13=1

b,2-(\(\frac{-3}{2}\))0+\(\frac{16}{4}:\frac{1}{2}\)=2-1+4:\(\frac{1}{2}\)=1+8=9

c\(^{3^5\cdot\frac{9}{3^7}\cdot2^0}\)=\(3^5\cdot\frac{3}{1}\cdot1=3^5\cdot3\cdot1=3^6\)

d,\(\frac{3}{2}-\frac{5}{6}:\left(\frac{1}{2}\right)^2=\frac{3}{2}-\frac{5}{6}:\frac{1}{4}=\frac{3}{2}-\frac{10}{3}=\frac{9}{6}-\frac{20}{6}=\frac{-11}{6}\)

câu 2

a\(\frac{x}{2}=\frac{4}{5}=\Rightarrow x\cdot5=2\cdot4\Rightarrow x=\frac{2.4}{5}=1,6\)