Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x,y thuộc z :
a, (x^2-7) . ( x^2 - 51) < 0
b, ( x-3) . ( 2y + 1) = 7
c, ( 2x+ 1 ) . ( 3y .2) =-55
a) Vì x,y thuộc Z
\(\Rightarrow\left(x-3\right)\left(2y+1\right)=1.7=-1.\left(-7\right)\)
x-3 |
1 |
-1 |
2y+1 | 7 | -7 |
x | 4 | -1 |
y | 3 | -3 |
a) |2x-5| = 13
suy ra 2x-5 thuộc{-13;13}
ta có bảng:
2x-5 | 13 | -13 |
2x | 18 | -18 |
x | 9 | -9 |
1a) (x-3)(2y+1)= 7
Vì \(x;y\in Z\Rightarrow\left(x-3\right);\left(2y+1\right)\inƯ\left(7\right)\)
Ta có bảng sau:
x-3 | -7 | -1 | 1 | 7 |
x | -4 | 2 | 4 | 10 |
2y+1 | -1 | -7 | 7 | 1 |
y | -1 | -4 | 3 | 0 |
Vậy x= -4 ; y= -1
x=2 ; y= -4
x=4; y=3
x= 10 ; y=0
1b) (2x+1)(3y-2) = -55
Vì \(x;y\in Z\Rightarrow2x+1;3y-2\inƯ\left(-55\right)\)
Ta có bảng sau
2x+1 | -55 | -11 | -5 | -1 | 1 | 5 | 11 | 55 |
x | -28 | -6 | -3 | -1 | 0 | 2 | 5 | 27 |
3y-2 | 1 | 5 | 11 | 55 | -55 | -11 | -5 | -1 |
y | 1 | ko tìm đc | ko tìm đc | ko tìm đc | ko tìm đc | -3 | -1 | ko tìm đc |
Vậy x=-28 ; y=1
x=2 ; y=-3
x= 5 ; y=-1
bạn nhớ thử lại nha( ra giấy nháp)
a) | 2x - 5 | = 13
=> 2x - 5 = 13 hoặc 2x - 5 = -13
+ Nếu 2x - 5 = 13
2x = 13 + 5
2x = 18
x = 18 : 2
x = 9
+ Nếu 2x - 5 = -13
2x = ( -13 ) + 5
2x = -8
x = ( -8 ) : 2
x = -4
=> x = { -4 ; 9 }
Tck nha
|7x + 3| = 66
7x + 3 = 66
7x = 66-3
7x = 63
x = 63 : 7
x = 9
a) |2x - 5| = 13
=> \(\orbr{\begin{cases}2x-5=13\\2x-5=-13\end{cases}}\)
=> \(\orbr{\begin{cases}2x=18\\2x=-8\end{cases}}\)
=> \(\orbr{\begin{cases}x=9\\x=-4\end{cases}}\)
Vậy ...
b) |7x + 3| = 66
=> \(\orbr{\begin{cases}7x+3=66\\7x+3=-66\end{cases}}\)
=> \(\orbr{\begin{cases}7x=63\\7x=-69\end{cases}}\)
=> \(\orbr{\begin{cases}x=9\\x=-\frac{69}{7}\end{cases}}\)
Vì x \(\in\)Z nên ...
c) |5x - 2| \(\le\)0
Ta có: | 5x - 2| \(\ge\)0
Mà | 5x - 2| \(\le\)0
=> |5x - 2| = 0
=> 5x - 2 = 0
=> 5x = 2
=> x = 2/5
vì x thuộc Z nên x ko có gtri nào thõa mãn
a) |2x - 5| = 13
=> 2x - 5 = -13 hoặc 2x - 5 = 13
=> x = -4 hoặc x = 9
b) |7x + 3| = 66
=> 7x + 3 = -66 hoặc 7x + 3 = 66
=> x = \(-\frac{69}{7}\) hoặc x = 9
c) |5x - 2| <= 0
Trong TH trên thì nếu < 0 thì ko có giá trị nào thỏa mãn vì giá trị tuyệt đối của một số luôn dương nên chỉ có thể = 0
|5x - 2| = 0
=> 5x - 2 = 0
=> x = \(\frac{2}{5}\)
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
a. /x+7/+3=2
=>/x+7/=-1
=>x ko tồn tại
b.1</x-2/<4
=>/x-2/ thuộc {2;3}
=>x-2 thuộc {2;-2;3;-3}
=>x thuộc {4;0;5;-1}
c./2x-5/=13
=>2x-5 =13 hoặc 2x-5=-13
=>2x=18 hoặc 2x =-8
=>x=9 hoặc x=-4
d;e làm tương tự !
a) \(\left|7x+3\right|=66\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x+3=66\\7x+3=-66\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x=63\\7x=-69\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=9\left(N\right)\\x=-\frac{69}{7}\left(L\right)\end{cases}}\)
Vậy...
b) \(\left|5x-2\right|\le0\)
mà \(\left|5x-2\right|\ge0\)
\(\Rightarrow\)\(\left|5x-2\right|=0\)
\(\Leftrightarrow\)\(5x-2=0\)
\(\Leftrightarrow\)\(x=\frac{2}{5}\) (loại)
Vậy...