K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

18 tháng 1 2019

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)

15 tháng 6 2019

Ủa đây là lớp 8 chứ bạn nhỉ?

15 tháng 6 2019

Sorry mik chỉ làm được bài b mong bạn thông cảm

Ta có : B=x2+x+1x2+2x+1=x2+x+1(x+1)2

Đặt y=x+1⇒x=y−1⇒B=(y−1)2+(y−1)+yy2=y2−y+1y2=1y2−1y+1

Đặt : t=1yB=t2−t+1=(t−12)2+34≥34

Vậy Bmin=34⇔t=12⇔y=2⇔x=1

~Hok tốt~

P/s:Mik nghĩ thế mong đúng

24 tháng 7 2018

a) \(\left|x-1\right|+\left|x+3\right|=4\left(1\right)\)

+) TH1: Nếu \(x< -3\) thì \(x-1< 0;x+3< 0\)

\(\Rightarrow\left|x-1\right|=-x+1;\left|x+3\right|=-x-3\)

PT (1) trở thành: \(-x+1-x-3=4\)

\(\Leftrightarrow-2x=6\Leftrightarrow x=-3\left(loại\right)\)

+) TH2: Nếu \(-3\le x< 1\) thì \(x-1< 0;x+3>0\)

\(\Rightarrow\left|x-1\right|=-x+1;\left|x+3\right|=x+3\)

PT (1) trở thành: \(-x+1+x+3=4\)

\(\Leftrightarrow0x=0\) (luôn đúng)

Kết hợp với đk ta được: \(\Rightarrow-3\le x< 1\)

+) TH3: Nếu \(x\ge1\) thì \(x-1>0;x+3>0\)

\(\Rightarrow\left|x-1\right|=x-1;\left|x+3\right|=x+3\)

PT (1) trở thành: \(x-1+x+3=4\)

\(\Leftrightarrow2x=2\Leftrightarrow x=1\left(t/m\right)\)

Vậy x nằm trong khoảng \(-3\le x\le1.\)

Mấy bài kia làm tương tự.

24 tháng 7 2018

2.

\(\left|x+1\right|+\left|x+2\right|+...+\left|x+10\right|=605x\)(1)

Vì các thừa số ở vế phải của (1) đều không âm nên x không âm. Do đó \(\left|x+1\right|+\left|x+2\right|+...+\left|x+10\right|=\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)\)

\(\Rightarrow\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=605x\)

\(\Rightarrow10x+\dfrac{10\left(10+1\right)}{2}=605x\)

\(\Rightarrow55=595x\)

\(\Rightarrow x=\dfrac{55}{595}=\dfrac{11}{119}\)

Vậy x = \(\dfrac{11}{119}\)

31 tháng 8 2019

a, \(\left(x+1\right)^2=169\)

\(\left(x+1\right)^2=13^2\)

\(x+1=13\)

\(x=13-1\)

\(x=12\)

31 tháng 8 2019

1.

a) \(\left(x+1\right)^2=169\)

\(x+1=\pm13\)

\(\left[{}\begin{matrix}x+1=13\\x+1=-13\end{matrix}\right.\)\(\left[{}\begin{matrix}x=13-1\\x=\left(-13\right)-1\end{matrix}\right.\)\(\left[{}\begin{matrix}x=12\\x=-14\end{matrix}\right.\)

Vậy \(x\in\left\{12;-14\right\}.\)

b) \(\left(x+3\right)^3=-\frac{1}{27}\)

\(\left(x+3\right)^3=\left(-\frac{1}{3}\right)^3\)

\(x+3=-\frac{1}{3}\)

\(x=\left(-\frac{1}{3}\right)-3\)

\(x=-\frac{10}{3}\)

Vậy \(x=-\frac{10}{3}.\)

c) \(\left(2x-4\right)^4=\frac{1}{625}\)

\(2x-4=\pm\frac{1}{5}\)

\(\left[{}\begin{matrix}2x-4=\frac{1}{5}\\2x-4=-\frac{1}{5}\end{matrix}\right.\)\(\left[{}\begin{matrix}2x=\frac{1}{5}+4=\frac{21}{5}\\2x=\left(-\frac{1}{5}\right)+4=\frac{19}{5}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\frac{21}{5}:2\\x=\frac{19}{5}:2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\frac{21}{10}\\x=\frac{19}{10}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{21}{10};\frac{19}{10}\right\}.\)

Còn câu d) bạn làm tương tự như mấy câu trên.

Chúc bạn học tốt!

29 tháng 6 2019

\(a,\left(y^{54}\right)^2=y\)\(\Rightarrow y^{108}=y\)\(\Rightarrow y=\pm1\)

\(b,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)

\(\Rightarrow x\in\left\{0;1;2\right\}\)

\(c,x\left(6-x\right)^{2019}=\left(6-x\right)^{2019}\)

\(\Rightarrow\left(6-x\right)^{2019}\left(x-1\right)=0\)

\(\Rightarrow x\in\left\{1;6\right\}\)

29 tháng 6 2019

\(\left(y^{54}\right)^2=y\)

\(\Rightarrow y^{108}=y\)

\(\Rightarrow y^{108}-y=0\)

\(\Rightarrow y\cdot\left(y^{107}-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

19 tháng 10 2022

\(A=-\left|2x-3\right|+1< =1\)

Dấu = xảy ra khi x=3/2

\(C=-\left|5x+2\right|-\left|3y+12\right|+4< =4\)

Dấu = xảy ra khi x=-2/5 và y=-4

\(D=-3\left(x+1\right)^2+5< =5\)

Dấu = xảy ra khi x=-1

\(E=\dfrac{1}{2}\left(x+1\right)^2+3>=3\)

Dấu = xảy ra khi x=-1

\(F=\dfrac{15}{4}+3\left|x-1\right|>=\dfrac{15}{4}\)

Dấu = xảy ra khi x=1

10 tháng 10 2020

Bài 1:

Ta có: \(2x+\left|x-3\right|=4\)

\(\Leftrightarrow\left|x-3\right|=4-2x\)

Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

10 tháng 10 2020

Bài 2:

a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)

Vậy Min(A) = 4 khi x = -5/3

b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)

Vậy Max(B) = 10 khi x = -1/2