Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
a) \(\left|x-1\right|+\left|x+3\right|=4\left(1\right)\)
+) TH1: Nếu \(x< -3\) thì \(x-1< 0;x+3< 0\)
\(\Rightarrow\left|x-1\right|=-x+1;\left|x+3\right|=-x-3\)
PT (1) trở thành: \(-x+1-x-3=4\)
\(\Leftrightarrow-2x=6\Leftrightarrow x=-3\left(loại\right)\)
+) TH2: Nếu \(-3\le x< 1\) thì \(x-1< 0;x+3>0\)
\(\Rightarrow\left|x-1\right|=-x+1;\left|x+3\right|=x+3\)
PT (1) trở thành: \(-x+1+x+3=4\)
\(\Leftrightarrow0x=0\) (luôn đúng)
Kết hợp với đk ta được: \(\Rightarrow-3\le x< 1\)
+) TH3: Nếu \(x\ge1\) thì \(x-1>0;x+3>0\)
\(\Rightarrow\left|x-1\right|=x-1;\left|x+3\right|=x+3\)
PT (1) trở thành: \(x-1+x+3=4\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\left(t/m\right)\)
Vậy x nằm trong khoảng \(-3\le x\le1.\)
Mấy bài kia làm tương tự.
2.
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+10\right|=605x\)(1)
Vì các thừa số ở vế phải của (1) đều không âm nên x không âm. Do đó \(\left|x+1\right|+\left|x+2\right|+...+\left|x+10\right|=\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)\)
\(\Rightarrow\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=605x\)
\(\Rightarrow10x+\dfrac{10\left(10+1\right)}{2}=605x\)
\(\Rightarrow55=595x\)
\(\Rightarrow x=\dfrac{55}{595}=\dfrac{11}{119}\)
Vậy x = \(\dfrac{11}{119}\)
a, \(\left(x+1\right)^2=169\)
\(\left(x+1\right)^2=13^2\)
\(x+1=13\)
\(x=13-1\)
\(x=12\)
1.
a) \(\left(x+1\right)^2=169\)
⇒ \(x+1=\pm13\)
⇒ \(\left[{}\begin{matrix}x+1=13\\x+1=-13\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=13-1\\x=\left(-13\right)-1\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=12\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{12;-14\right\}.\)
b) \(\left(x+3\right)^3=-\frac{1}{27}\)
⇒ \(\left(x+3\right)^3=\left(-\frac{1}{3}\right)^3\)
⇒ \(x+3=-\frac{1}{3}\)
⇒ \(x=\left(-\frac{1}{3}\right)-3\)
⇒ \(x=-\frac{10}{3}\)
Vậy \(x=-\frac{10}{3}.\)
c) \(\left(2x-4\right)^4=\frac{1}{625}\)
⇒ \(2x-4=\pm\frac{1}{5}\)
⇒ \(\left[{}\begin{matrix}2x-4=\frac{1}{5}\\2x-4=-\frac{1}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=\frac{1}{5}+4=\frac{21}{5}\\2x=\left(-\frac{1}{5}\right)+4=\frac{19}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{21}{5}:2\\x=\frac{19}{5}:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=\frac{21}{10}\\x=\frac{19}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{21}{10};\frac{19}{10}\right\}.\)
Còn câu d) bạn làm tương tự như mấy câu trên.
Chúc bạn học tốt!
\(a,\left(y^{54}\right)^2=y\)\(\Rightarrow y^{108}=y\)\(\Rightarrow y=\pm1\)
\(b,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
\(c,x\left(6-x\right)^{2019}=\left(6-x\right)^{2019}\)
\(\Rightarrow\left(6-x\right)^{2019}\left(x-1\right)=0\)
\(\Rightarrow x\in\left\{1;6\right\}\)
\(\left(y^{54}\right)^2=y\)
\(\Rightarrow y^{108}=y\)
\(\Rightarrow y^{108}-y=0\)
\(\Rightarrow y\cdot\left(y^{107}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
\(A=-\left|2x-3\right|+1< =1\)
Dấu = xảy ra khi x=3/2
\(C=-\left|5x+2\right|-\left|3y+12\right|+4< =4\)
Dấu = xảy ra khi x=-2/5 và y=-4
\(D=-3\left(x+1\right)^2+5< =5\)
Dấu = xảy ra khi x=-1
\(E=\dfrac{1}{2}\left(x+1\right)^2+3>=3\)
Dấu = xảy ra khi x=-1
\(F=\dfrac{15}{4}+3\left|x-1\right|>=\dfrac{15}{4}\)
Dấu = xảy ra khi x=1
Bài 1:
Ta có: \(2x+\left|x-3\right|=4\)
\(\Leftrightarrow\left|x-3\right|=4-2x\)
Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
Bài 2:
a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)
Vậy Min(A) = 4 khi x = -5/3
b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)
Vậy Max(B) = 10 khi x = -1/2